O'Neill M, Powell L M, Murray N E
Institute of Cell and Molecular Biology, University of Edinburgh, Darwin Building, Mayfield Road, King's Buildings, Edinburgh, EH9 3JR, UK.
J Mol Biol. 2001 Mar 30;307(3):951-63. doi: 10.1006/jmbi.2001.4543.
We report a genetic and biochemical analysis of a target recognition domain (TRD) of EcoKI, a type I restriction and modification enzyme. The TRDs of type I R-M systems are within the specificity subunit (HsdS) and HsdS confers sequence specificity to a complex endowed with both restriction and modification activities. Random mutagenesis has revealed that most substitutions within the amino TRD of EcoKI, a region comprising 157 amino acid residues, have no detectable effect on the phenotype of the bacterium, even when the substitutions are non- conservative. The structure of the TRD appears to be robust. All but one of the six substitutions that confer a restriction-deficient, modification-deficient (r(-)m(-)) phenotype were found to be in the interval between residues 80 and 110, a region predicted by sequence comparisons to form part of the protein-DNA interface. Additional site-directed mutations affecting this interval commonly impair both restriction and modification. However, we show that an r(-) phenotype cannot be taken as evidence that the EcoKI complex lacks endonuclease activity; in response to even a slightly impaired modification efficiency, the endonuclease activity of EcoKI is destroyed by a process dependent upon the ClpXP protease. Enzymes from mutants with an r(-)m(-) phenotype commonly retain some sequence-specific activity; methylase activity can be detected on hemimethylated DNA substrates and residual endonuclease activity is implied whenever the viability of the r(-)m(-) bacterium is dependent on ClpXP. Conversely, the viability of ClpX(-) r(-)m(-) bacteria can be used as evidence for little, or no, endonuclease activity. Of 14 mutants with an r(-)m(-) phenotype, only six are viable in the absence of ClpXP. The significance of four of the six residues (G91, G105, F107 and G141) is enhanced by the finding that even conservative substitutions for these residues impair modification, thereby conferring an r(-)m(-) phenotype.
我们报告了对I型限制与修饰酶EcoKI的靶标识别结构域(TRD)的遗传和生化分析。I型限制-修饰(R-M)系统的TRD位于特异性亚基(HsdS)内,且HsdS赋予具有限制和修饰活性的复合物序列特异性。随机诱变表明,EcoKI氨基端TRD内(该区域由157个氨基酸残基组成)的大多数替换,即使是那些非保守替换,对细菌的表型也没有可检测到的影响。TRD的结构似乎很稳定。导致限制缺陷、修饰缺陷(r(-)m(-))表型的六个替换中,除了一个之外,其余均位于80至110位残基之间的区间,通过序列比较预测该区域构成蛋白质-DNA界面的一部分。影响此区间的其他定点突变通常会损害限制和修饰功能。然而,我们表明,r(-)表型不能作为EcoKI复合物缺乏内切核酸酶活性的证据;即使修饰效率略有受损,EcoKI的内切核酸酶活性也会通过依赖于ClpXP蛋白酶的过程被破坏。具有r(-)m(-)表型的突变体的酶通常保留一些序列特异性活性;在半甲基化DNA底物上可检测到甲基化酶活性,并且只要r(-)m(-)细菌的生存能力依赖于ClpXP,就意味着存在残余的内切核酸酶活性。相反,ClpX(-) r(-)m(-)细菌的生存能力可作为内切核酸酶活性很低或没有的证据。在14个具有r(-)m(-)表型的突变体中,只有6个在没有ClpXP的情况下能够存活。六个残基(G91、G105、F107和G141)中的四个的重要性因以下发现而增强:即使这些残基的保守替换也会损害修饰,从而赋予r(-)m(-)表型。