Suppr超能文献

I型DNA限制酶EcoKI的序列特异性DNA结合

Sequence-specific DNA binding by EcoKI, a type IA DNA restriction enzyme.

作者信息

Powell L M, Dryden D T, Murray N E

机构信息

Institute of Cell & Molecular Biology, University of Edinburgh, The King's Buildings, Edinburgh, EH9 3JR, UK.

出版信息

J Mol Biol. 1998 Nov 13;283(5):963-76. doi: 10.1006/jmbi.1998.2143.

Abstract

The type I DNA restriction and modification enzymes of prokaryotes are multimeric enzymes that cleave unmethylated, foreign DNA in a complex process involving recognition of the methylation status of a DNA target sequence, extensive translocation of DNA in both directions towards the enzyme bound at the target sequence, ATP hydrolysis, which is believed to drive the translocation possibly via a helicase mechanism, and eventual endonucleolytic cleavage of the DNA. We have examined the DNA binding affinity and exonuclease III footprint of the EcoKI type IA restriction enzyme on oligonucleotide duplexes that either contain or lack the target sequence. The influence of the cofactors, S-adenosyl methionine and ATP, on binding to DNA of different methylation states has been assessed. EcoKI in the absence of ATP, with or without S-adenosyl methionine, binds tightly even to DNA lacking the target site and the exonuclease footprint is large, approximately 45 base-pairs. The protection is weaker on DNA lacking the target site. Partially assembled EcoKI lacking one or both of the subunits essential for DNA cleavage, is unable to bind tightly to DNA lacking the target site but can bind tightly to the recognition site. The addition of ATP to EcoKI, in the presence of AdoMet, allows tight binding only to the target site and the footprint shrinks to 30 base-pairs, almost identical to that of the modification enzyme which makes up the core of EcoKI. The same effect occurs when S-adenosyl homocysteine or sinefungin are substituted for S-adenosyl methionine, and ADP or ATPgammaS are substituted for ATP. It is proposed that the DNA binding surface of EcoKI comprises three regions: a "core" region which recognises the target sequence and which is present on the modification enzyme, and a region on each DNA cleavage subunit. The cleavage subunits make tight contacts to any DNA molecule in the absence of cofactors, but this contact is weakened in the presence of cofactors to allow the protein conformational changes required for DNA translocation when a target site is recognised by the core modification enzyme. This weakening of the interaction between the DNA cleavage subunits and the DNA could allow more access of exonuclease III to the DNA and account for the shorter footprint.

摘要

原核生物的I型DNA限制与修饰酶是多聚体酶,在一个复杂过程中切割未甲基化的外源DNA,该过程涉及识别DNA靶序列的甲基化状态、DNA向结合于靶序列的酶双向广泛移位、ATP水解(据信可能通过解旋酶机制驱动移位)以及最终DNA的核酸内切酶切割。我们研究了EcoKI IA型限制酶对含有或缺乏靶序列的寡核苷酸双链体的DNA结合亲和力和核酸外切酶III足迹。评估了辅因子S-腺苷甲硫氨酸和ATP对与不同甲基化状态DNA结合的影响。在没有ATP的情况下,无论有无S-腺苷甲硫氨酸,EcoKI都能紧密结合甚至与缺乏靶位点的DNA结合,且核酸外切酶足迹很大,约45个碱基对。对缺乏靶位点的DNA的保护作用较弱。缺少一个或两个对DNA切割至关重要的亚基的部分组装EcoKI,无法紧密结合缺乏靶位点的DNA,但能紧密结合识别位点。在AdoMet存在的情况下,向EcoKI添加ATP仅允许其紧密结合靶位点,足迹缩小至30个碱基对,几乎与构成EcoKI核心的修饰酶的足迹相同。当用S-腺苷高半胱氨酸或杀稻瘟菌素替代S-腺苷甲硫氨酸,用ADP或ATPγS替代ATP时,会出现相同的效果。有人提出,EcoKI的DNA结合表面包括三个区域:一个识别靶序列的“核心”区域,存在于修饰酶上,以及每个DNA切割亚基上的一个区域。在没有辅因子的情况下,切割亚基与任何DNA分子紧密接触,但在有辅因子的情况下,这种接触会减弱,以便当核心修饰酶识别靶位点时允许发生DNA移位所需的蛋白质构象变化。DNA切割亚基与DNA之间相互作用的这种减弱可能会使核酸外切酶III更容易接近DNA,并解释了较短的足迹。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验