Baudry K, Swain E, Rahier A, Germann M, Batta A, Rondet S, Mandala S, Henry K, Tint G S, Edlind T, Kurtz M, Nickels J T
Department of Biochemistry, MCP Hahnemann University, Philadelphia, Pennsylvania 19129, USA.
J Biol Chem. 2001 Apr 20;276(16):12702-11. doi: 10.1074/jbc.M100274200. Epub 2001 Jan 18.
A temperature-sensitive Saccharomyces cerevisiae mutant harboring a lesion in the ERG26 gene has been isolated. ERG26 encodes 4alpha-carboxysterol-C3 dehydrogenase, one of three enzymatic activities required for the conversion of 4,4-dimethylzymosterol to zymosterol. Gas chromatography/mass spectrometry analyses of sterols in this mutant, designated erg26-1, revealed the aberrant accumulation of a 4-methyl-4-carboxy zymosterol intermediate, as well as a novel 4-carboxysterol. Neutral lipid radiolabeling studies showed that erg26-1 cells also harbored defects in the rate of biosynthesis and steady-state levels of mono-, di-, and triglycerides. Phospholipid radiolabeling studies showed defects in the rate of biosynthesis of both phosphatidic acid and phosphatidylinositol. Biochemical studies revealed that microsomes isolated from erg26-1 cells contained greatly reduced 4alpha-carboxysterol-C3 dehydrogenase activity when compared with microsomes from wild type cells. Previous studies have shown that loss of function mutations in either of the fatty acid elongase genes SUR4/ELO3 or FEN1/GNS1/ELO2 can "bypass" the essentiality of certain ERG genes (Ladeveze, V., Marcireau, C., Delourme, D., and Karst, F. (1993) Lipids 28, 907-912; Silve, S., Leplatois, P., Josse, A., Dupuy, P. H., Lanau, C., Kaghad, M., Dhers, C., Picard, C., Rahier, A., Taton, M., Le Fur, G., Caput, D., Ferrara, P., and Loison, G. (1996) Mol. Cell. Biol. 16, 2719-2727). Studies presented here have shown that this sphingolipid-dependent "bypass" mechanism did not suppress the essential requirement for zymosterol biosynthesis. However, studies aimed at understanding the underlying physiology behind the temperature-sensitive growth defect of erg26-1 cells showed that the addition of several antifungal compounds to the growth media of erg26-1 cells could suppress the temperature-sensitive growth defect. Fluorescence microscopic analysis showed that GFP-Erg26p and GFP-Erg27p fusion proteins were localized to the endoplasmic reticulum. Two-hybrid analysis indicated that Erg25p, Erg26p, and Erg27p, which are required for the biosynthesis of zymosterol, form a complex within the cell.
已分离出一株在ERG26基因中存在损伤的温度敏感型酿酒酵母突变体。ERG26编码4α-羧基甾醇-C3脱氢酶,它是4,4-二甲基酵母甾醇转化为酵母甾醇所需的三种酶活性之一。对该命名为erg26-1的突变体中的甾醇进行气相色谱/质谱分析,发现一种4-甲基-4-羧基酵母甾醇中间体以及一种新型4-羧基甾醇异常积累。中性脂质放射性标记研究表明,erg26-1细胞在单甘油酯、二甘油酯和三甘油酯的生物合成速率和稳态水平方面也存在缺陷。磷脂放射性标记研究表明,磷脂酸和磷脂酰肌醇的生物合成速率存在缺陷。生化研究表明,与野生型细胞的微粒体相比,从erg26-1细胞中分离出的微粒体中4α-羧基甾醇-C3脱氢酶活性大大降低。先前的研究表明,脂肪酸延长酶基因SUR4/ELO3或FEN1/GNS1/ELO2中任何一个的功能丧失突变都可以“绕过”某些ERG基因的必要性(Ladeveze, V., Marcireau, C., Delourme, D., and Karst, F. (1993) Lipids 28, 907 - 912; Silve, S., Leplatois, P., Josse, A., Dupuy, P. H., Lanau, C., Kaghad, M., Dhers, C., Picard, C., Rahier, A., Taton, M., Le Fur, G., Caput, D., Ferrara, P., and Loison, G. (1996) Mol. Cell. Biol. 16, 2719 - 2727)。此处呈现的研究表明,这种鞘脂依赖性“绕过”机制并未抑制酵母甾醇生物合成的基本需求。然而,旨在了解erg26-1细胞温度敏感生长缺陷背后潜在生理学的研究表明,向erg26-1细胞的生长培养基中添加几种抗真菌化合物可以抑制温度敏感生长缺陷。荧光显微镜分析表明,GFP-Erg₂6p和GFP-Erg₂7p融合蛋白定位于内质网。双杂交分析表明,酵母甾醇生物合成所需的Erg₂5p、Erg₂6p和Erg₂7p在细胞内形成复合物。