Suppr超能文献

氨基糖苷类抗生素激酶APH(3')-IIIa的分子机制:保守活性位点残基的作用

Molecular mechanism of aminoglycoside antibiotic kinase APH(3')-IIIa: roles of conserved active site residues.

作者信息

Boehr D D, Thompson P R, Wright G D

机构信息

Antimicrobial Research Centre, Department of Biochemistry, McMaster University, Ontario L8N 3Z5, Canada.

出版信息

J Biol Chem. 2001 Jun 29;276(26):23929-36. doi: 10.1074/jbc.M100540200. Epub 2001 Feb 27.

Abstract

The aminoglycoside antibiotic kinases (APHs) constitute a clinically important group of antibiotic resistance enzymes. APHs share structural and functional homology with Ser/Thr and Tyr kinases, yet only five amino acids are invariant between the two groups of enzymes and these residues are all located within the nucleotide binding regions of the proteins. We have performed site-directed mutagenesis on all five conserved residues in the aminoglycoside kinase APH(3')-IIIa: Lys(44) and Glu(60) involved in ATP capture, a putative active site base required for deprotonating the incoming aminoglycoside hydroxyl group Asp(190), and the Mg(2+) ligands Asn(195) and Glu(208), which coordinate two Mg(2+) ions, Mg1 and Mg2. Previous structural and mutagenesis evidence have demonstrated that Lys(44) interacts directly with the phosphate groups of ATP; mutagenesis of invariant Glu(60), which forms a salt bridge with the epsilon-amino group of Lys(44), demonstrated that this residue does not play a critical role in ATP recognition or catalysis. Results of mutagenesis of Asp(190) were consistent with a role in proper positioning of the aminoglycoside hydroxyl during phosphoryl transfer but not as a general base. The Mg1 and Mg2 ligand Asp(208) was found to be absolutely required for enzyme activity and the Mg2 ligand Asn(195) is important for Mg.ATP recognition. The mutagenesis results together with solvent isotope, solvent viscosity, and divalent cation requirements are consistent with a dissociative mechanism of phosphoryl transfer where initial substrate deprotonation is not essential for phosphate transfer and where Mg2 and Asp(208) likely play a critical role in stabilization of a metaphosphate-like transition state. These results lay the foundation for the synthesis of transition state mimics that could reverse aminoglycoside antibiotic resistance in vivo.

摘要

氨基糖苷类抗生素激酶(APHs)是临床上一类重要的抗生素抗性酶。APHs与丝氨酸/苏氨酸激酶和酪氨酸激酶在结构和功能上具有同源性,但两组酶之间只有五个氨基酸是不变的,且这些残基都位于蛋白质的核苷酸结合区域内。我们对氨基糖苷激酶APH(3')-IIIa中的所有五个保守残基进行了定点诱变:参与ATP捕获的赖氨酸(Lys)44和谷氨酸(Glu)60、使进入的氨基糖苷羟基去质子化所需的一个假定活性位点碱基天冬氨酸(Asp)190,以及与两个镁离子Mg1和Mg2配位的镁离子配体天冬酰胺(Asn)195和谷氨酸(Glu)208。先前的结构和诱变证据表明,赖氨酸(Lys)44直接与ATP的磷酸基团相互作用;与赖氨酸(Lys)44的ε-氨基形成盐桥的不变谷氨酸(Glu)60的诱变表明,该残基在ATP识别或催化中不起关键作用。天冬氨酸(Asp)190的诱变结果与在磷酸转移过程中氨基糖苷羟基的正确定位作用一致,但不是作为一个通用碱基。发现镁离子配体天冬氨酸(Asp)208是酶活性绝对必需的,而镁离子配体天冬酰胺(Asn)195对Mg.ATP识别很重要。诱变结果与溶剂同位素、溶剂粘度和二价阳离子需求一起,与磷酸转移的解离机制一致,即初始底物去质子化对磷酸转移不是必需的,并且镁离子2和天冬氨酸(Asp)208可能在类偏磷酸过渡态的稳定中起关键作用。这些结果为合成可在体内逆转氨基糖苷类抗生素抗性的过渡态模拟物奠定了基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验