Department of Chemical Biology, Stratingh Institute for Chemistry, Nijenborgh 7, 9747 AG, Groningen (The, Netherlands.
AGILeBiotics B.V., De Mudden 14, 9747 AV, Groningen (The, Netherlands.
Chemistry. 2022 Jun 27;28(36):e202200883. doi: 10.1002/chem.202200883. Epub 2022 May 17.
The continuous emergence of antimicrobial resistance is causing a threat to patients infected by multidrug-resistant pathogens. In particular, the clinical use of aminoglycoside antibiotics, broad-spectrum antibacterials of last resort, is limited due to rising bacterial resistance. One of the major resistance mechanisms in Gram-positive and Gram-negative bacteria is phosphorylation of these amino sugars at the 3'-position by O-phosphotransferases [APH(3')s]. Structural alteration of these antibiotics at the 3'-position would be an obvious strategy to tackle this resistance mechanism. However, the access to such derivatives requires cumbersome multi-step synthesis, which is not appealing for pharma industry in this low-return-on-investment market. To overcome this obstacle and combat bacterial resistance mediated by APH(3')s, we introduce a novel regioselective modification of aminoglycosides in the 3'-position via palladium-catalyzed oxidation. To underline the effectiveness of our method for structural modification of aminoglycosides, we have developed two novel antibiotic candidates overcoming APH(3')s-mediated resistance employing only four synthetic steps.
抗菌药物耐药性的不断出现,对感染多重耐药病原体的患者构成了威胁。特别是,由于细菌耐药性的上升,氨基糖苷类抗生素(作为最后手段的广谱抗菌药物)的临床应用受到限制。在革兰氏阳性和革兰氏阴性细菌中,主要的耐药机制之一是通过 O-磷酸转移酶(APH(3')s)在 3'位置对这些氨基糖进行磷酸化。在 3'位置对这些抗生素进行结构改变将是应对这种耐药机制的明显策略。然而,获得这些衍生物需要繁琐的多步合成,对于投资回报率低的制药行业来说,这并没有吸引力。为了克服这一障碍并对抗由 APH(3')s 介导的细菌耐药性,我们通过钯催化氧化在 3'位置引入了一种新型的氨基糖苷类化合物的区域选择性修饰方法。为了强调我们对氨基糖苷类化合物结构修饰方法的有效性,我们仅通过四个合成步骤开发了两种克服 APH(3')s 介导的耐药性的新型抗生素候选药物。