Suppr超能文献

I型膜蛋白人巨细胞病毒US11的信号肽切割依赖于其膜锚定结构。

Signal peptide cleavage of a type I membrane protein, HCMV US11, is dependent on its membrane anchor.

作者信息

Rehm A, Stern P, Ploegh H L, Tortorella D

机构信息

Harvard Medical School, Department of Pathology, Boston, MA 02115, USA.

出版信息

EMBO J. 2001 Apr 2;20(7):1573-82. doi: 10.1093/emboj/20.7.1573.

Abstract

The human cytomegalovirus (HCMV) US11 polypeptide is a type I membrane glycoprotein that targets major histocompatibility complex (MHC) class I molecules for destruction in a proteasome-dependent manner. Although the US11 signal sequence appears to be a classical N-terminal signal peptide in terms of its sequence and cleavage site, a fraction of newly synthesized US11 molecules retain the signal peptide after the N-linked glycan has been attached and translation of the US11 polypeptide has been completed. Delayed cleavage of the US11 signal peptide is determined by the first four residues, the so-called n-region of the signal peptide. Its replacement with the four N-terminal residues of the H-2K(b) signal sequence eliminates delayed cleavage. Surprisingly, a second region that affects the rate and extent of signal peptide cleavage is the transmembrane region close to the C-terminus of US11. Deletion of the transmembrane region of US11 (US11-180) significantly delays processing, a delay overcome by replacement with the H-2K(b) signal sequence. Thus, elements at a considerable distance from the signal sequence affect its cleavage.

摘要

人巨细胞病毒(HCMV)的US11多肽是一种I型膜糖蛋白,它以蛋白酶体依赖的方式靶向主要组织相容性复合体(MHC)I类分子进行破坏。尽管US11信号序列就其序列和切割位点而言似乎是一个典型的N端信号肽,但一部分新合成的US11分子在N-连接聚糖附着且US11多肽的翻译完成后仍保留信号肽。US11信号肽的延迟切割由信号肽的前四个残基(即所谓的n区域)决定。用H-2K(b)信号序列的四个N端残基替换它可消除延迟切割。令人惊讶的是,影响信号肽切割速率和程度的第二个区域是靠近US11 C端的跨膜区域。删除US11的跨膜区域(US11-180)会显著延迟加工,用H-2K(b)信号序列替换可克服这种延迟。因此,与信号序列相距相当远的元件会影响其切割。

相似文献

2
TRAM1 participates in human cytomegalovirus US2- and US11-mediated dislocation of an endoplasmic reticulum membrane glycoprotein.
J Biol Chem. 2009 Feb 27;284(9):5905-14. doi: 10.1074/jbc.M807568200. Epub 2009 Jan 2.
3
Rhesus cytomegalovirus contains functional homologues of US2, US3, US6, and US11.
J Virol. 2005 May;79(9):5786-98. doi: 10.1128/JVI.79.9.5786-5798.2005.
4
Human cytomegalovirus-encoded US2 and US11 target unassembled MHC class I heavy chains for degradation.
Mol Immunol. 2006 Mar;43(8):1258-66. doi: 10.1016/j.molimm.2005.07.005. Epub 2005 Aug 10.
8
Transcriptional regulation of the human cytomegalovirus US11 early gene.
J Virol. 1999 Feb;73(2):863-70. doi: 10.1128/JVI.73.2.863-870.1999.
10
HLA-B locus products resist degradation by the human cytomegalovirus immunoevasin US11.
PLoS Pathog. 2019 Sep 17;15(9):e1008040. doi: 10.1371/journal.ppat.1008040. eCollection 2019 Sep.

引用本文的文献

1
Translational regulation and protein-coding capacity of the 5' untranslated region of human TREM2.
Commun Biol. 2023 Jun 8;6(1):616. doi: 10.1038/s42003-023-04998-6.
2
Signal sequences encode information for protein folding in the endoplasmic reticulum.
J Cell Biol. 2023 Jan 2;222(1). doi: 10.1083/jcb.202203070. Epub 2022 Dec 2.
4
Unconventional Protein Secretion in Brain Tumors Biology: Enlightening the Mechanisms for Tumor Survival and Progression.
Front Cell Dev Biol. 2022 Jun 15;10:907423. doi: 10.3389/fcell.2022.907423. eCollection 2022.
6
The E Carboxyterminus: Much More Than a Membrane Anchor.
Viruses. 2021 Jun 23;13(7):1203. doi: 10.3390/v13071203.
7
A slowly cleaved viral signal peptide acts as a protein-integral immune evasion domain.
Nat Commun. 2021 Apr 6;12(1):2061. doi: 10.1038/s41467-021-21983-x.
8
Downstream Sequences Control the Processing of the Pestivirus E-E1 Precursor.
J Virol. 2020 Dec 9;95(1). doi: 10.1128/JVI.01905-20.
9
Past and ongoing adaptation of human cytomegalovirus to its host.
PLoS Pathog. 2020 May 8;16(5):e1008476. doi: 10.1371/journal.ppat.1008476. eCollection 2020 May.
10
Battle between Host Immune Cellular Responses and HCMV Immune Evasion.
Int J Mol Sci. 2019 Jul 24;20(15):3626. doi: 10.3390/ijms20153626.

本文引用的文献

1
The translocon: a dynamic gateway at the ER membrane.
Annu Rev Cell Dev Biol. 1999;15:799-842. doi: 10.1146/annurev.cellbio.15.1.799.
3
Regulation of protein biogenesis at the endoplasmic reticulum membrane.
Trends Cell Biol. 1999 Apr;9(4):132-7. doi: 10.1016/s0962-8924(99)01504-4.
5
Ubiquitin and the control of protein fate in the secretory and endocytic pathways.
Annu Rev Cell Dev Biol. 1998;14:19-57. doi: 10.1146/annurev.cellbio.14.1.19.
7
Life and death of a signal peptide.
Nature. 1998 Nov 12;396(6707):111, 113. doi: 10.1038/24036.
8
Signal sequences: more than just greasy peptides.
Trends Cell Biol. 1998 Oct;8(10):410-5. doi: 10.1016/s0962-8924(98)01360-9.
9
Signal sequence recognition in posttranslational protein transport across the yeast ER membrane.
Cell. 1998 Sep 18;94(6):795-807. doi: 10.1016/s0092-8674(00)81738-9.
10
Crystal structure of the signal sequence binding subunit of the signal recognition particle.
Cell. 1998 Jul 24;94(2):181-91. doi: 10.1016/s0092-8674(00)81418-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验