Suppr超能文献

泰国口腔癌中p53表达与嚼槟榔之间不存在关联。

Lack of association between p53 expression and betel nut chewing in oral cancers from Thailand.

作者信息

Thongsuksai P, Boonyaphiphat P

机构信息

Department of Pathology, Faculty of Medicine, Prince of Songkla University, Hat-Yai, 90110, Songkhla, Thailand.

出版信息

Oral Oncol. 2001 Apr;37(3):276-81. doi: 10.1016/s1368-8375(00)00127-5.

Abstract

To elucidate whether betel-associated oral squamous cell carcinoma is associated with p53 protein expression, tumor samples from 156 patients with detailed histories of exposures were investigated immunohistochemically using CM1 antibody. The expression of p53 (>10% positive cells) was found in 38.5% of the cases. The frequency of expression in betel chewers alone and betel chewer with tobacco use were 37.9% (11/29) and 25%(9/36), respectively, whereas that in betel chewers with smoking/drinking it was 47.2%(17/36) and in smokers or drinkers without chewing was 42.0% (21/50). However, the differences were not statistically significant. Multivariate analysis also revealed with the no independent association of betel chewing with p53 expression (odds ratio [OR] 1.81, 95% confidence interval 0.50-6.49), whereas alcohol drinking and smokeless tobacco use were significant (OR 7.58, 2.01-28.53 and 0.39, 0.16-0.98, respectively). These results suggested that betel chewing with or without smokeless tobacco use may not induce oral cancers via a p53-dependent pathway. However, since this is an immunohistochemical study, further molecular analysis is needed.

摘要

为了阐明槟榔相关的口腔鳞状细胞癌是否与p53蛋白表达相关,我们使用CM1抗体对156例有详细暴露史患者的肿瘤样本进行了免疫组织化学研究。在38.5%的病例中发现了p53的表达(阳性细胞>10%)。仅咀嚼槟榔者和同时咀嚼槟榔与烟草者的表达频率分别为37.9%(11/29)和25%(9/36),而同时咀嚼槟榔与吸烟/饮酒者的表达频率为47.2%(17/36),不咀嚼槟榔的吸烟者或饮酒者的表达频率为42.0%(21/50)。然而,这些差异无统计学意义。多因素分析还显示,咀嚼槟榔与p53表达无独立相关性(优势比[OR]1.81,95%置信区间0.50 - 6.49),而饮酒和使用无烟烟草则具有显著性(OR分别为7.58,2.01 - 28.53和0.39,0.16 - 0.98)。这些结果表明,无论是否使用无烟烟草,咀嚼槟榔可能不会通过p53依赖途径诱发口腔癌。然而,由于这是一项免疫组织化学研究,还需要进一步的分子分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验