Suppr超能文献

钙/钙调蛋白依赖蛋白激酶II(CaMKII)和蛋白激酶A(PKA)在调控果蝇神经元放电模式和钾离子电流中的不同作用。

Distinct roles of CaMKII and PKA in regulation of firing patterns and K(+) currents in Drosophila neurons.

作者信息

Yao W D, Wu C F

机构信息

Department of Biological Sciences, University of Iowa, Iowa City, Iowa 52242, USA.

出版信息

J Neurophysiol. 2001 Apr;85(4):1384-94. doi: 10.1152/jn.2001.85.4.1384.

Abstract

The Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and the cAMP-dependent protein kinase A (PKA) cascades have been implicated in neural mechanisms underlying learning and memory as supported by mutational analyses of the two enzymes in Drosophila. While there is mounting evidence for their roles in synaptic plasticity, less attention has been directed toward their regulation of neuronal membrane excitability and spike information coding. Here we report genetic and pharmacological analyses of the roles of PKA and CaMKII in the firing patterns and underlying K(+) currents in cultured Drosophila central neurons. Genetic perturbation of the catalytic subunit of PKA (DC0) did not alter the action potential duration but disrupted the frequency coding of spike-train responses to constant current injection in a subpopulation of neurons. In contrast, selective inhibition of CaMKII by the expression of an inhibitory peptide in ala transformants prolonged the spike duration but did not affect the spike frequency coding. Enhanced membrane excitability, indicated by spontaneous bursts of spikes, was observed in CaMKII-inhibited but not in PKA-diminished neurons. In wild-type neurons, the spike train firing patterns were highly reproducible under consistent stimulus conditions. However, disruption of either of these kinase pathways led to variable firing patterns in response to identical current stimuli delivered at a low frequency. Such variability in spike duration and frequency coding may impose problems for precision in signal processing in these protein kinase learning mutants. Pharmacological analyses of mutations that affect specific K(+) channel subunits demonstrated distinct effects of PKA and CaMKII in modulation of the kinetics and amplitude of different K(+) currents. The results suggest that PKA modulates Shaker A-type currents, whereas CaMKII modulates Shal-A type currents plus delayed rectifier Shab currents. Thus differential regulation of K(+) channels may influence the signal handling capability of neurons. This study provides support for the notion that, in addition to synaptic mechanisms, modulations in spike activity patterns may represent an important mechanism for learning and memory that should be explored more fully.

摘要

钙/钙调蛋白依赖性蛋白激酶II(CaMKII)和环磷酸腺苷依赖性蛋白激酶A(PKA)级联反应与学习和记忆的神经机制有关,果蝇中这两种酶的突变分析支持了这一点。虽然越来越多的证据表明它们在突触可塑性中发挥作用,但对它们对神经元膜兴奋性和动作电位信息编码的调节关注较少。在这里,我们报告了PKA和CaMKII在培养的果蝇中枢神经元放电模式和潜在钾电流中的作用的遗传和药理学分析。PKA催化亚基(DC0)的基因扰动不会改变动作电位持续时间,但会破坏神经元亚群中对恒定电流注入的动作电位序列反应的频率编码。相比之下,在ala转化体中通过表达抑制肽选择性抑制CaMKII会延长动作电位持续时间,但不影响动作电位频率编码。在CaMKII抑制的神经元中观察到以自发动作电位爆发为特征的增强的膜兴奋性,而在PKA减少的神经元中未观察到。在野生型神经元中,在一致的刺激条件下动作电位序列放电模式具有高度可重复性。然而,这两种激酶途径中的任何一种被破坏都会导致对低频施加的相同电流刺激产生可变的放电模式。这种动作电位持续时间和频率编码的变异性可能会给这些蛋白激酶学习突变体的信号处理精度带来问题。对影响特定钾通道亚基的突变进行的药理学分析表明,PKA和CaMKII在调节不同钾电流的动力学和幅度方面具有不同的作用。结果表明,PKA调节Shaker A型电流,而CaMKII调节Shal-A型电流以及延迟整流器Shab电流。因此,钾通道的差异调节可能会影响神经元的信号处理能力。这项研究支持了这样一种观点,即除了突触机制外,动作电位活动模式的调节可能是学习和记忆的一种重要机制,应该更全面地进行探索。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验