Collings D A, Zsuppan G, Allen N S, Blancaflor E B
Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA.
Planta. 2001 Feb;212(3):392-403. doi: 10.1007/s004250000406.
The distribution of actin filaments within the gravity-sensing columella cells of plant roots remains poorly understood, with studies over numerous years providing inconsistent descriptions of actin organization in these cells. This uncertainty in actin organization, and thus in actin's role in graviperception and gravisignaling, has led us to investigate actin arrangements in the columella cells of Zea mays L., Medicago truncatula Gaertn., Linum usitatissiilium L. and Nicotianla benthamiana Domin. Actin organization was examined using a combination of optimized immunofluorescence techniques, and an improved fluorochrome-conjugated phalloidin labeling method reliant on 3-maleimidobenzoyl-N-hydroxy-succinimide ester (MBS) cross-linking combined with glycerol permeabilization. Confocal microscopy of root sections labeled with anti-actin antibodies revealed patterns suggestive of actin throughout the columella region. These patterns included short and fragmented actin bundles, fluorescent rings around amyloplasts and intense fluorescence originating from the nucleus. Additionally, confocal microscopy of MBS-stabilized and Alexa Fluor-phalloidin-labeled root sections revealed a previously undetected state of actin organization in the columella. Discrete actin structures surrounded the amyloplasts and prominent actin cables radiated from the nuclear surface toward the cell periphery. Furthermore, the cortex of the columella cells contained fine actin bundles (or single filaments) that had a predominant transverse orientation. We also used confocal microscopy of plant roots expressing endoplasmic reticulum (ER)-targeted green fluorescent protein to demonstrate rapid ER movements within the columella cells, suggesting that the imaged actin network is functional. The successful identification of discrete actin structures in the root columella cells forms the perception and signaling.
植物根中重力感应的根冠细胞内肌动蛋白丝的分布仍知之甚少,多年来的研究对这些细胞中肌动蛋白的组织描述并不一致。肌动蛋白组织的这种不确定性,以及因此肌动蛋白在重力感知和重力信号传导中的作用的不确定性,促使我们研究玉米、蒺藜苜蓿、亚麻和本氏烟草根冠细胞中的肌动蛋白排列。使用优化的免疫荧光技术组合以及一种改进的依赖于3-马来酰亚胺基苯甲酰-N-羟基琥珀酰亚胺酯(MBS)交联并结合甘油通透化的荧光素偶联鬼笔环肽标记方法来检查肌动蛋白组织。用抗肌动蛋白抗体标记的根切片的共聚焦显微镜检查揭示了根冠区域中提示肌动蛋白的模式。这些模式包括短而破碎的肌动蛋白束、淀粉体周围的荧光环以及源自细胞核的强烈荧光。此外,对MBS稳定并经Alexa Fluor-鬼笔环肽标记的根切片的共聚焦显微镜检查揭示了根冠中一种以前未检测到的肌动蛋白组织状态。离散的肌动蛋白结构围绕着淀粉体,突出的肌动蛋白束从核表面向细胞周边辐射。此外,根冠细胞的皮层含有具有主要横向取向的细肌动蛋白束(或单丝)。我们还使用表达内质网(ER)靶向绿色荧光蛋白的植物根的共聚焦显微镜来证明根冠细胞内内质网的快速移动,这表明成像的肌动蛋白网络是有功能的。在根冠细胞中成功鉴定出离散的肌动蛋白结构形成了感知和信号传导。