Baum E B, Boneh D, Garrett C
NEC Research Institute, 4 Independence Way, Princeton, NJ 08540, USA.
Evol Comput. 2001 Spring;9(1):93-124. doi: 10.1162/10636560151075130.
We analyze the performance of a genetic algorithm (GA) we call Culling, and a variety of other algorithms, on a problem we refer to as the Additive Search Problem (ASP). We show that the problem of learning the Ising perceptron is reducible to a noisy version of ASP. Noisy ASP is the first problem we are aware of where a genetic-type algorithm bests all known competitors. We generalize ASP to k-ASP to study whether GAs will achieve "implicit parallelism" in a problem with many more schemata. GAs fail to achieve this implicit parallelism, but we describe an algorithm we call Explicitly Parallel Search that succeeds. We also compute the optimal culling point for selective breeding, which turns out to be independent of the fitness function or the population distribution. We also analyze a mean field theoretic algorithm performing similarly to Culling on many problems. These results provide insight into when and how GAs can beat competing methods.
我们分析了一种我们称为“淘汰”的遗传算法(GA)以及其他多种算法在一个我们称为“加法搜索问题”(ASP)的问题上的性能。我们表明,学习伊辛感知器的问题可简化为ASP的一个噪声版本。噪声ASP是我们所知道的第一个遗传类算法优于所有已知竞争对手的问题。我们将ASP推广到k - ASP,以研究遗传算法在具有更多模式的问题中是否会实现“隐式并行性”。遗传算法未能实现这种隐式并行性,但我们描述了一种我们称为“显式并行搜索”的算法,该算法成功实现了隐式并行性。我们还计算了选择性育种的最优淘汰点,结果表明它与适应度函数或种群分布无关。我们还分析了一种在许多问题上表现与“淘汰”算法类似的平均场理论算法。这些结果为遗传算法何时以及如何能够击败竞争方法提供了见解。