Suppr超能文献

用于聚类问题的建设性遗传算法。

Constructive genetic algorithm for clustering problems.

作者信息

Lorena L A, Furtado J C

机构信息

LAC-Instituto Nacional de Pesquisas Espaciais, Av. dos Astronautas 1758 - Caixa Postal 515, 12201-970 São José dos Campos-SP, Brazil.

出版信息

Evol Comput. 2001 Fall;9(3):309-27. doi: 10.1162/106365601750406019.

Abstract

Genetic algorithms (GAs) have recently been accepted as powerful approaches to solving optimization problems. It is also well-accepted that building block construction (schemata formation and conservation) has a positive influence on GA behavior. Schemata are usually indirectly evaluated through a derived structure. We introduce a new approach called the Constructive Genetic Algorithm (CGA), which allows for schemata evaluation and the provision of other new features to the GA. Problems are modeled as bi-objective optimization problems that consider the evaluation of two fitness functions. This double fitness process, called fg-fitness, evaluates schemata and structures in a common basis. Evolution is conducted considering an adaptive rejection threshold that contemplates both objectives and attributes a rank to each individual in population. The population is dynamic in size and composed of schemata and structures. Recombination preserves good schemata, and mutation is applied to structures to get population diversification. The CGA is applied to two clustering problems in graphs. Representation of schemata and structures use a binary digit alphabet and are based on assignment (greedy) heuristics that provide a clearly distinguished representation for the problems. The clustering problems studied are the classical p-median and the capacitated p-median. Good results are shown for problem instances taken from the literature.

摘要

遗传算法(GAs)最近已被公认为解决优化问题的强大方法。构建模块构建(模式形成和保存)对遗传算法的行为有积极影响,这一点也得到了广泛认可。模式通常通过派生结构进行间接评估。我们引入了一种称为建设性遗传算法(CGA)的新方法,该方法允许对模式进行评估,并为遗传算法提供其他新特性。问题被建模为考虑两个适应度函数评估的双目标优化问题。这个称为fg适应度的双重适应度过程在一个共同的基础上评估模式和结构。进化过程中考虑了一个自适应拒绝阈值,该阈值兼顾两个目标,并为种群中的每个个体赋予一个排名。种群规模是动态的,由模式和结构组成。重组保留良好的模式,变异应用于结构以实现种群多样化。CGA被应用于图中的两个聚类问题。模式和结构的表示使用二进制数字字母表,并基于分配(贪婪)启发式算法,为问题提供了清晰可辨的表示。所研究的聚类问题是经典的p中位数问题和带容量限制的p中位数问题。对于从文献中选取的问题实例,展示了良好的结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验