Bunc V
Research Laboratory, Charles University Faculty of Physical Education and Sports, Prague, Czech Republic.
J Sports Med Phys Fitness. 2000 Dec;40(4):290-6.
The energy demands of movement may be characterised by the energy cost C, which indicates how much energy is needed to carry a body mass of 1 kg over a distance of 1 m. It is generally accepted that the lower C represents a lesser amount of mechanical work executed with the same efficiency. The purpose of this study was to assess the influence of body fat on energy cost of running in healthy non-trained females.
Energy cost of running (C) was determined on the treadmill in a group of healthy non-trained females (N=63, mean age=39.+/-10.2 years, body mass=64.6+/-5.5 kg, height= 166.2+/-5.7 cm, VO2max.kg(-1)=35.0+/-3.6 ml.kg(-1)min(-1)), differing significantly in the percentage of body fat (18.9-30.2%), assessed by the 10 skinfold measurements.
Mean value of C was 3.97+/-0.07 J.kg(-1)m(-1). The lowest values of C were found in subjects with the lowest %BF (C ranged from 3.81 to 4.06 J.kg(-1).m(-1)). There is a significant positive correlation between C and %BF [C (J.kg(-1).m(-1))= 0.0185*%BF (%) + 3.5090; r=0.7805; p<0.001; r2=0.6091], C and body mass (BM) [C (J.kg(-1).m(-1)) = 0.0083BM (kg) + 3.4384; r=0.6176; p<0.001; r2 = 0.3814], and C and free fat mass (FFM) [C (J.kg(-1).m(-1))=0.0087FFM (kg) + 3.5543; r=0.3521; p<0.05; r2=0.1240]. There is a negative correlation between C and VO2max.kg(-1) [C (J.kg(-1).m(-1))=-0.0181* VO2max.kg(-1) (ml.kg(-1).min(-1)) +4.6071; r=-0.8810; p<0.0001; r2=0.7761], and VO2max.kg(-1) and %BF [VO2max.kg(-1) (ml.kg(-1).min(-1)) =-0.8401* %BF(%) + 54.1021; r=-0.7142; p<0.0001; r2=0.5101].
From the collected data for untrained females we may conclude: first, the higher the training state (VO2max.kg(-1)), the lower the energy cost of running. Second, the energy cost of running C increases with the increase in body mass, %BF and FFM. Third, the training state decreases (VO2max.kg(-1)) with the increase in %BF.
运动的能量需求可用能量消耗C来表征,它表示将1千克体重移动1米所需的能量。人们普遍认为,C值越低,在相同效率下执行的机械功就越少。本研究的目的是评估体脂对健康非训练女性跑步能量消耗的影响。
在跑步机上测定一组健康非训练女性(N = 63,平均年龄 = 39.±10.2岁,体重 = 64.6±5.5千克,身高 = 166.2±5.7厘米,最大摄氧量·千克⁻¹ = 35.0±3.6毫升·千克⁻¹·分钟⁻¹)的跑步能量消耗(C),通过10处皮褶测量评估,她们的体脂百分比(18.9 - 30.2%)差异显著。
C的平均值为3.97±0.07焦·千克⁻¹·米⁻¹。在体脂百分比最低的受试者中发现了最低的C值(C范围为3.81至4.06焦·千克⁻¹·米⁻¹)。C与体脂百分比[C(焦·千克⁻¹·米⁻¹)= 0.0185×体脂百分比(%) + 3.5090;r = 0.7805;p < 0.001;r² = 0.6091]、C与体重(BM)[C(焦·千克⁻¹·米⁻¹) = 0.0083×BM(千克) + 3.4384;r = 0.6176;p < 0.001;r² = 0.3814]以及C与去脂体重(FFM)[C(焦·千克⁻¹·米⁻¹)=0.0087×FFM(千克) + 3.5543;r = 0.3521;p < 0.05;r² = 0.1240]之间存在显著正相关。C与最大摄氧量·千克⁻¹[C(焦·千克⁻¹·米⁻¹)=-0.0181×最大摄氧量·千克⁻¹(毫升·千克⁻¹·分钟⁻¹) +4.6071;r = -0.8810;p < 0.0001;r² = 0.7761]以及最大摄氧量·千克⁻¹与体脂百分比[最大摄氧量·千克⁻¹(毫升·千克⁻¹·分钟⁻¹) =-0.8401×体脂百分比(%) + 54.1021;r = -0.7142;p < 0.0001;r² = 0.5101]之间存在负相关。
根据收集到的非训练女性数据,我们可以得出以下结论:第一,训练状态(最大摄氧量·千克⁻¹)越高,跑步的能量消耗越低。第二,跑步的能量消耗C随着体重、体脂百分比和去脂体重的增加而增加。第三,训练状态(最大摄氧量·千克⁻¹)随着体脂百分比的增加而降低。