Shelton V M, Sosnick T R, Pan T
Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, University of Chicago, Illinois 60637, USA.
Biochemistry. 2001 Mar 27;40(12):3629-38. doi: 10.1021/bi002646+.
The isothermal equilibrium folding of the unmodified yeast tRNA(Phe) is studied as a function of Na(+), Mg(2+), and urea concentration with hydroxyl radical protection, circular dichroism, and diethyl pyrocarbonate (DEPC) modification. These assays indicate that this tRNA folds in Na(+) alone. Similar to folding in Mg(2+), folding in Na(+) can be described by two transitions, unfolded-to-intermediate-to-native. The I-to-N transition has a Na(+) midpoint of approximately 0.5 M and a Hill constant of approximately 4. Unexpectedly, the urea m-value, the dependence of free energy on urea concentration, for the I-to-N transition is significantly smaller in Na(+) than in Mg(2+), 0.4 versus 1.7 kcal mol(-1) M(-1), indicating that more structure is formed in the Mg(2+)-induced transition. DEPC modification indicates that the I state in Na(+)-induced folding contains all four helices of tRNA and the I-to-N transition primarily corresponds to the formation of the tertiary structure. In contrast, the intermediate in Mg(2+)-induced folding contains only three helices, and the I-to-N transition corresponds to the formation of the acceptor stem plus tertiary structure. The cation dependence of the intermediates arises from the differences in the stability of the acceptor stem and the tertiary structure. The acceptor stem is stable at a lower Na(+) concentration than required for the tertiary structure formation. The relative stability is reversed in Mg(2+) so that the acceptor stem and the tertiary structure form simultaneously in the I-to-N transition. These results demonstrate that formation of the RNA secondary structure can be independent or coupled to the formation of the tertiary structure depending on their relative stability in monovalent and divalent ions.
利用羟基自由基保护、圆二色性和焦碳酸二乙酯(DEPC)修饰等方法,研究了未修饰的酵母苯丙氨酸转运核糖核酸(tRNA(Phe))的等温平衡折叠过程与钠离子、镁离子和尿素浓度的关系。这些实验表明,这种tRNA仅在钠离子存在下就能折叠。与在镁离子存在下的折叠情况类似,在钠离子存在下的折叠过程可通过两个转变来描述,即从展开态到中间态再到天然态。从中间态到天然态的转变,钠离子的中点浓度约为0.5 M,希尔系数约为4。出乎意料的是,从中间态到天然态转变的尿素m值(自由能对尿素浓度的依赖性)在钠离子存在下比在镁离子存在下显著更小,分别为0.4与1.7千卡·摩尔⁻¹·M⁻¹,这表明在镁离子诱导的转变中形成了更多的结构。DEPC修饰表明,钠离子诱导折叠中的中间态包含tRNA的所有四个螺旋,从中间态到天然态的转变主要对应于三级结构的形成。相比之下,镁离子诱导折叠中的中间态仅包含三个螺旋,从中间态到天然态的转变对应于受体茎加上三级结构的形成。中间态对阳离子的依赖性源于受体茎和三级结构稳定性的差异。受体茎在比三级结构形成所需浓度更低的钠离子浓度下就稳定。在镁离子存在下,相对稳定性发生了反转,使得受体茎和三级结构在从中间态到天然态的转变中同时形成。这些结果表明,RNA二级结构的形成可以独立于或与三级结构的形成相耦合,这取决于它们在单价和二价离子中的相对稳定性。