Bender R, Lange S
Institute of Epidemiology and Medical Statistics, School of Public Health, University of Bielefeld, Germany.
J Clin Epidemiol. 2001 Apr;54(4):343-9. doi: 10.1016/s0895-4356(00)00314-0.
Multiplicity of data, hypotheses, and analyses is a common problem in biomedical and epidemiological research. Multiple testing theory provides a framework for defining and controlling appropriate error rates in order to protect against wrong conclusions. However, the corresponding multiple test procedures are underutilized in biomedical and epidemiological research. In this article, the existing multiple test procedures are summarized for the most important multiplicity situations. It is emphasized that adjustments for multiple testing are required in confirmatory studies whenever results from multiple tests have to be combined in one final conclusion and decision. In case of multiple significance tests a note on the error rate that will be controlled for is desirable.
数据、假设和分析的多样性是生物医学和流行病学研究中的常见问题。多重检验理论提供了一个框架,用于定义和控制适当的错误率,以防止得出错误结论。然而,相应的多重检验程序在生物医学和流行病学研究中未得到充分利用。在本文中,针对最重要的多样性情况总结了现有的多重检验程序。需要强调的是,在确证性研究中,只要必须将多次检验的结果合并为一个最终结论和决策,就需要对多重检验进行调整。在进行多次显著性检验时,最好说明将控制的错误率。