Suppr超能文献

RISE:应用于疫苗学的高维替代标志物的两阶段基于排序的识别

RISE: Two-Stage Rank-Based Identification of High-Dimensional Surrogate Markers Applied to Vaccinology.

作者信息

Hughes Arthur, Parast Layla, Thiébaut Rodolphe, Hejblum Boris P

机构信息

INSERM, INRIA, BPH, U1219, SISTM, University of Bordeaux, Bordeaux, France.

Vaccine Research Institute, Créteil, France.

出版信息

Stat Med. 2025 Sep;44(20-22):e70241. doi: 10.1002/sim.70241.

Abstract

In vaccine trials with long-term participant follow-up, it is of great importance to identify surrogate markers that accurately infer long-term immune responses. These markers offer practical advantages such as providing early, indirect evidence of vaccine efficacy, and can accelerate vaccine development while identifying potential biomarkers. High-throughput technologies such as RNA-sequencing have emerged as promising tools for understanding complex biological systems and informing new treatment strategies. However, these data are high-dimensional, presenting unique statistical challenges for existing surrogate marker identification methods. We introduce Rank-based Identification of high-dimensional SurrogatE Markers (RISE), a novel approach designed for small sample, high-dimensional settings typical in modern vaccine experiments. RISE uses a nonparametric univariate test to screen variables for promising candidates, followed by surrogate evaluation on independent data. Our simulation studies demonstrate RISE's desirable properties, including type one error rate control and empirical power under various conditions. Applying RISE to a clinical trial for inactivated influenza vaccination, we sought to identify genes whose expression could serve as a surrogate for the induced immune response. This analysis revealed a signature of genes appearing to function as a reasonable surrogate for the neutralizing antibody response. Pathways related to innate antiviral signaling and interferon stimulation were strongly represented in this derived surrogate, providing a clear immunological interpretation.

摘要

在对参与者进行长期随访的疫苗试验中,识别能够准确推断长期免疫反应的替代标志物至关重要。这些标志物具有实际优势,比如能提供疫苗效力的早期间接证据,并且在识别潜在生物标志物的同时可加速疫苗研发。诸如RNA测序等高通量技术已成为理解复杂生物系统和为新治疗策略提供信息的有前景的工具。然而,这些数据是高维的,给现有的替代标志物识别方法带来了独特的统计挑战。我们引入了基于秩的高维替代标志物识别方法(RISE),这是一种专为现代疫苗实验中典型的小样本、高维情况设计的新方法。RISE使用非参数单变量检验来筛选变量以找出有潜力的候选者,随后在独立数据上进行替代物评估。我们的模拟研究证明了RISE的理想特性,包括在各种条件下的一类错误率控制和经验功效。将RISE应用于一项灭活流感疫苗接种的临床试验中,我们试图识别其表达可作为诱导免疫反应替代物的基因。该分析揭示了一组似乎可作为中和抗体反应合理替代物的基因特征。与先天抗病毒信号传导和干扰素刺激相关的通路在这个衍生的替代物中得到了强烈体现,提供了清晰的免疫学解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ef9/12412727/69c6eef95134/SIM-44-0-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验