Luo Z, Geschwind D H
Neurogenetics Program, University of California at Los Angeles School of Medicine, Los Angeles, California 90095, USA.
Neurobiol Dis. 2001 Apr;8(2):183-93. doi: 10.1006/nbdi.2001.0387.
Advances in all facets of technology from molecular biology to imaging and computational biology offer unprecedented opportunities for improving our understanding of the brain in health and disease. Oligonucleotide and cDNA microarray analysis, using a variety of "DNA chips," is a recently developed high-throughput technique that allows for tour-de-force analysis of gene expression. We review this powerful technique, developed in genetics laboratories, with reference to applications in neurologic diseases in humans and the use of animal models. The typical microarray experiment is multistaged and includes preparation or purchase of arrays, preparation of target DNA and probe, target DNA hybridization, microarray scanning, and image analysis. The power and pitfalls of this technology are discussed in the context of neuroscience paradigms. Since unprecedented amounts of data are produced from microarray experiments, bioinformatics and modeling expertise are increasingly becoming critical components of this approach.
从分子生物学到成像和计算生物学,技术各方面的进步为增进我们对健康和疾病状态下大脑的理解提供了前所未有的机遇。使用各种“DNA芯片”的寡核苷酸和cDNA微阵列分析是一项最近开发的高通量技术,它能对基因表达进行全面分析。我们参考其在人类神经疾病中的应用以及动物模型的使用情况,回顾这项在遗传学实验室中开发的强大技术。典型的微阵列实验分多个阶段,包括阵列的制备或购买、靶DNA和探针的制备、靶DNA杂交、微阵列扫描以及图像分析。本文将在神经科学范式的背景下讨论这项技术的优势与缺陷。由于微阵列实验会产生数量空前的数据,生物信息学和建模专业知识正日益成为这种方法的关键组成部分。