Lee Tih-Shih, Mane Shrikant, Eid Tore, Zhao Hongyu, Lin Aiping, Guan Zhong, Kim Jung H, Schweitzer Jeffrey, King-Stevens David, Weber Peter, Spencer Susan S, Spencer Dennis D, de Lanerolle Nihal C
Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520-8082, USA.
Mol Med. 2007 Jan-Feb;13(1-2):1-13. doi: 10.2119/2006-00079.Lee.
Patients with temporal lobe epilepsy (TLE) often have a shrunken hippocampus that is known to be the location in which seizures originate. The role of the sclerotic hippocampus in the causation and maintenance of seizures in temporal lobe epilepsy (TLE) has remained incompletely understood despite extensive neuropathological investigations of this substrate. To gain new insights and develop new testable hypotheses on the role of sclerosis in the pathophysiology of TLE, the differential gene expression profile was studied. To this end, DNA microarray analysis was used to compare gene expression profiles in sclerotic and non-sclerotic hippocampi surgically removed from TLE patients. Sclerotic hippocampi had transcriptional signatures that were different from non-sclerotic hippocampi. The differentially expressed gene set in sclerotic hippocampi revealed changes in several molecular signaling pathways, which included the increased expression of genes associated with astrocyte structure (glial fibrillary acidic protein, ezrin-moesin-radixin, palladin), calcium regulation (S100 calcium binding protein beta, chemokine (C-X-C motif) receptor 4) and blood-brain barrier function (Aquaaporin 4, Chemokine (C-C- motif) ligand 2, Chemokine (C-C- motif) ligand 3, Plectin 1, intermediate filament binding protein 55kDa) and inflammatory responses. Immunohistochemical localization studies show that there is altered distribution of the gene-associated proteins in astrocytes from sclerotic foci compared with non-sclerotic foci. It is hypothesized that the astrocytes in sclerotic tissue have activated molecular pathways that could lead to enhanced release of glutamate by these cells. Such glutamate release may excite surrounding neurons and elicit seizure activity.
颞叶癫痫(TLE)患者的海马体往往萎缩,而海马体正是癫痫发作的起源部位。尽管对该病变部位进行了广泛的神经病理学研究,但硬化海马体在颞叶癫痫(TLE)发作的起因和维持过程中的作用仍未完全明确。为了深入了解并提出关于硬化在TLE病理生理学中作用的新的可检验假设,我们研究了差异基因表达谱。为此,我们使用DNA微阵列分析来比较从TLE患者手术切除的硬化海马体和非硬化海马体中的基因表达谱。硬化海马体具有与非硬化海马体不同的转录特征。硬化海马体中差异表达的基因集显示出几种分子信号通路的变化,其中包括与星形胶质细胞结构相关的基因(胶质纤维酸性蛋白、埃兹蛋白-莫伊辛-拉德蛋白、帕拉丁)、钙调节相关基因(S100钙结合蛋白β、趋化因子(C-X-C基序)受体4)以及血脑屏障功能相关基因(水通道蛋白4、趋化因子(C-C基序)配体2、趋化因子(C-C基序)配体3、网蛋白1、中间丝结合蛋白55kDa)和炎症反应相关基因的表达增加。免疫组织化学定位研究表明,与非硬化病灶相比,硬化病灶中星形胶质细胞中基因相关蛋白的分布发生了改变。据推测,硬化组织中的星形胶质细胞激活了分子通路,这可能导致这些细胞释放更多谷氨酸。这种谷氨酸释放可能会刺激周围神经元并引发癫痫活动。