Epron D, Le Dantec V, Dufrene E, Granier A
Laboratoire de Biologie et Ecophysiologie, Institut des Sciences et des Techniques de l'Environnement, Université de Franche-Comté, Montbéliard, France.
Tree Physiol. 2001 Feb;21(2-3):145-52. doi: 10.1093/treephys/21.2-3.145.
Respiration of the rhizosphere in a beech (Fagus sylvatica L.) forest was calculated by subtracting microbial respiration associated with organic matter decomposition from daily mean soil CO2 efflux. We used a semi-mechanistic soil organic matter model to simulate microbial respiration, which was validated against "no roots" data from trenched subplots. Rhizosphere respiration exhibited pronounced seasonal variation from 0.2 g C m(-2) day(-1) in January to 2.3 g C m(-2) day(-1) in July. Rhizosphere respiration accounted for 30 to 60% of total soil CO2 efflux, with an annual mean of 52%. The high Q10 (3.9) for in situ rhizosphere respiration was ascribed to the confounding effects of temperature and changes in root biomass and root and shoot activities. When data were normalized to the same soil temperature based on a physiologically relevant Q10 value of 2.2, the lowest values of temperature-normalized rhizosphere respiration were observed from January to March, whereas the highest value was observed in early July when fine root growth is thought to be maximal.
通过从每日平均土壤二氧化碳通量中减去与有机物分解相关的微生物呼吸作用,计算了山毛榉(欧洲山毛榉)森林根际的呼吸作用。我们使用了一个半机理土壤有机质模型来模拟微生物呼吸作用,该模型根据来自开沟小样地的“无根”数据进行了验证。根际呼吸作用呈现出明显的季节性变化,从1月份的0.2克碳每平方米每天到7月份的2.3克碳每平方米每天。根际呼吸作用占土壤总二氧化碳通量的30%至60%,年平均值为52%。原位根际呼吸作用的高Q10值(3.9)归因于温度以及根生物量和根与地上部分活动变化的混杂效应。当基于生理相关的Q10值2.2将数据归一化到相同土壤温度时,1月至3月观察到温度归一化根际呼吸作用的最低值,而在7月初观察到最高值,此时细根生长被认为达到最大值。