Formánek Pavel, Ambus Per
Department of Geology and Pedology, Mendel University of Agriculture and Forestry in Brno, Zemedelska 3, 613 00 Brno, Czech Republic.
Rapid Commun Mass Spectrom. 2004;18(8):897-902. doi: 10.1002/rcm.1424.
Our understanding of forest biosphere-atmosphere interactions is fundamental for predicting forest ecosystem responses to climatic changes. Currently, however, our knowledge is incomplete partly due to inability to separate the major components of soil CO(2) effluxes, viz. root respiration, microbial decomposition of soil organic matter and microbial decomposition of litter material. In this study we examined whether the delta(13)C characteristics of solid organic matter and respired CO(2) from different soil-C components and root respiration in a Danish beech forest were useful to provide information on the root respiration contribution to total CO(2) effluxes. The delta(13)C isotopic analyses of CO(2) were performed using a FinniganMAT Delta(PLUS) isotope-ratio mass spectrometer coupled in continuous flow mode to a trace gas preparation-concentration unit (PreCon). Gas samples in 2-mL crimp seal vials were analysed in a fully automatic mode with an experimental standard error +/-0.11 per thousand. We observed that the CO(2) derived from root-free mineral soil horizons (A, B(W)) was more enriched in (13)C (delta(13)C range -21.6 to -21.2 per thousand ) compared with CO(2) derived from root-free humus layers (delta(13)C range -23.6 to -23.4 per thousand ). The CO(2) evolved from root respiration in isolated young beech plants revealed a value intermediate between those for the soil humus and mineral horizons, delta(13)C(root) = -22.2 per thousand, but was associated with great variability (SE +/- 1.0 per thousand ) due to plant-specific differences. delta(13)C of CO(2) from in situ below-ground respiration averaged -22.8 per thousand, intermediate between the values for the humus layer and root respiration, but variability was great (SE +/- 0.4 per thousand ) due to pronounced spatial patterns. Overall, we were unable to statistically separate the CO(2) of root respiration vs. soil organic matter decomposition based solely on delta(13)C signatures, yet the trend in the data suggests that root respiration contributed approximately 43% to total respiration. The vertical gradient in delta(13)C, however, might be a useful tool in partitioning respiration in different soil layers. The experiment also showed an unexpected (13)C-enrichment of CO(2) (>3.5 per thousand ) compared with the total-C signatures in the individual soil-C components. This may suggest that analyses of bulk samples are not representative for the C-pools actively undergoing decomposition.
我们对森林生物圈与大气相互作用的理解是预测森林生态系统对气候变化响应的基础。然而目前,我们的认识并不完整,部分原因是无法区分土壤CO₂通量的主要组成部分,即根系呼吸、土壤有机质的微生物分解以及凋落物的微生物分解。在本研究中,我们考察了丹麦山毛榉林中不同土壤碳组分和根系呼吸的固体有机质及呼出CO₂的δ¹³C特征是否有助于提供根系呼吸对总CO₂通量贡献的信息。使用与痕量气体制备浓缩单元(PreCon)以连续流动模式联用的FinniganMAT Delta(PLUS)同位素比率质谱仪对CO₂进行δ¹³C同位素分析。2 mL压接密封小瓶中的气体样品以全自动模式进行分析,实验标准误差为±0.11‰。我们观察到,与来自无根腐殖质层的CO₂(δ¹³C范围为-23.6‰至-23.4‰)相比,来自无根矿质土壤层(A、B(W))的CO₂在¹³C中更富集(δ¹³C范围为-21.6‰至-21.2‰)。分离出的年轻山毛榉植株根系呼吸释放的CO₂的值介于土壤腐殖质和矿质层的值之间,δ¹³C(root)=-22.2‰,但由于植物特异性差异,其变异性较大(标准误差±1.0‰)。原位地下呼吸产生的CO₂的δ¹³C平均为-22.8‰,介于腐殖质层和根系呼吸的值之间,但由于明显的空间格局,变异性很大(标准误差±0.4‰)。总体而言,我们无法仅基于δ¹³C特征从统计学上区分根系呼吸产生的CO₂与土壤有机质分解产生的CO₂,不过数据趋势表明根系呼吸对总呼吸的贡献约为43%。然而,δ¹³C的垂直梯度可能是划分不同土壤层呼吸的有用工具。该实验还表明,与各个土壤碳组分中的总碳特征相比,CO₂出现了意外的¹³C富集(>3.5‰)。这可能表明对大量样品的分析不能代表正在进行分解的活性碳库。