Barkai E
Department of Chemistry and Center for Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Apr;63(4 Pt 2):046118. doi: 10.1103/PhysRevE.63.046118. Epub 2001 Mar 29.
Recently, Metzler et al. [Phys. Rev. Lett. 82, 3563 (1999)], introduced a fractional Fokker-Planck equation (FFPE) describing a subdiffusive behavior of a particle under the combined influence of external nonlinear force field, and a Boltzmann thermal heat bath. In this paper we present the solution of the FFPE in terms of an integral transformation. The transformation maps the solution of ordinary Fokker-Planck equation onto the solution of the FFPE, and is based on Lévy's generalized central limit theorem. The meaning of the transformation is explained based on the known asymptotic solution of the continuous time random walk (CTRW). We investigate in detail (i) a force-free particle, (ii) a particle in a uniform field, and (iii) a particle in a harmonic field. We also find an exact solution of the CTRW, and compare the CTRW result with the corresponding solution of the FFPE. The relation between the fractional first passage time problem in an external nonlinear field and the corresponding integer first passage time is given. An example of the one-dimensional fractional first passage time in an external linear field is investigated in detail. The FFPE is shown to be compatible with the Scher-Montroll approach for dispersive transport, and thus is applicable in a large variety of disordered systems. The simple FFPE approach can be used as a practical tool for a phenomenological description of certain types of complicated transport phenomena.
最近,梅茨勒等人[《物理评论快报》82, 3563 (1999)]引入了一个分数阶福克 - 普朗克方程(FFPE),该方程描述了在外部非线性力场和玻尔兹曼热浴的联合影响下粒子的亚扩散行为。在本文中,我们通过积分变换给出了FFPE的解。该变换将普通福克 - 普朗克方程的解映射到FFPE的解上,并且基于列维广义中心极限定理。基于连续时间随机游走(CTRW)的已知渐近解来解释该变换的意义。我们详细研究了:(i)一个无外力作用的粒子;(ii)处于均匀场中的粒子;(iii)处于简谐场中的粒子。我们还找到了CTRW的精确解,并将CTRW的结果与FFPE的相应解进行了比较。给出了外部非线性场中分数阶首次通过时间问题与相应整数首次通过时间之间的关系。详细研究了外部线性场中一维分数阶首次通过时间的一个例子。结果表明,FFPE与用于扩散输运的舍尔 - 蒙特罗尔方法兼容,因此适用于多种无序系统。简单的FFPE方法可作为一种实用工具,用于对某些类型的复杂输运现象进行唯象描述。