Suppr超能文献

具有有限平均停留时间的分数时间随机游走亚扩散与反常输运:更快,而非更慢。

Fractional-time random walk subdiffusion and anomalous transport with finite mean residence times: faster, not slower.

作者信息

Goychuk Igor

机构信息

Institut für Physik, Universität Augsburg, Universitätsstraße 1, D-86135 Augsburg, Germany.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Aug;86(2 Pt 1):021113. doi: 10.1103/PhysRevE.86.021113. Epub 2012 Aug 13.

Abstract

Continuous time random walk (CTRW) subdiffusion along with the associated fractional Fokker-Planck equation (FFPE) is traditionally based on the premise of random clock with divergent mean period. This work considers an alternative CTRW and FFPE description which is featured by finite mean residence times (MRTs) in any spatial domain of finite size. Transient subdiffusive transport can occur on a very large time scale τ(c) which can greatly exceed mean residence time in any trap, τ(c) >>(τ), and even not being related to it. Asymptotically, on a macroscale transport becomes normal for t >> τ(c). However, mesoscopic transport is anomalous. Differently from viscoelastic subdiffusion no long-range anticorrelations among position increments are required. Moreover, our study makes it obvious that the transient subdiffusion and transport are faster than one expects from their normal asymptotic limit on a macroscale. This observation has profound implications for anomalous mesoscopic transport processes in biological cells because the macroscopic viscosity of cytoplasm is finite.

摘要

连续时间随机游走(CTRW)亚扩散以及相关的分数阶福克 - 普朗克方程(FFPE)传统上基于具有发散平均周期的随机时钟前提。这项工作考虑了一种替代的CTRW和FFPE描述,其特征在于在任何有限大小的空间域中具有有限的平均停留时间(MRT)。瞬态亚扩散输运可以在非常大的时间尺度τ(c)上发生,该时间尺度可以大大超过任何陷阱中的平均停留时间,τ(c) >> (τ),甚至与之无关。渐近地,在宏观尺度上,对于t >> τ(c),输运变为正常。然而,介观尺度的输运是反常的。与粘弹性亚扩散不同,位置增量之间不需要长程反相关。此外,我们的研究表明,瞬态亚扩散和输运比人们从宏观尺度上的正常渐近极限所预期的要快。这一观察结果对生物细胞中的反常介观输运过程具有深远意义,因为细胞质的宏观粘度是有限的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验