Gerard P D, Schucany W R
Experimental Statistics Unit, Mississippi State University, Mississippi 39762, USA.
Biometrics. 1999 Sep;55(3):769-73. doi: 10.1111/j.0006-341x.1999.00769.x.
Seber (1986, Biometrics 42, 267-292) suggested an approach to biological population density estimation using kernel estimates of the probability density of detection distances in line transect sampling. Chen (1996a, Applied Statistics 45, 135-150) and others have employed cross validation to choose a global bandwidth for the kernel estimator or have suggested adaptive kernel estimation (Chen, 1996b, Biometrics 52, 1283-1294). Because estimation of the density is required at only a single point, we investigate a local bandwidth selection procedure that is a modification of the method of Schucany (1995, Journal of the American Statistical Association 90, 535-540) for nonparametric regression. We report on simulation results comparing the proposed method and a local normal scale rule with cross validation and adaptive estimation. The local bandwidths and normal scale rule produce estimates with mean squares that are half the size of the others in most cases. Consistency results are also provided.
西伯(1986年,《生物统计学》42卷,第267 - 292页)提出了一种利用线截抽样中探测距离概率密度的核估计来估计生物种群密度的方法。陈(1996a,《应用统计学》45卷,第135 - 150页)等人采用交叉验证为核估计器选择全局带宽,或者提出了自适应核估计(陈,1996b,《生物统计学》52卷,第1283 - 1294页)。由于仅在单个点需要估计密度,我们研究了一种局部带宽选择程序,它是对舒卡尼(1995年,《美国统计协会杂志》90卷,第535 - 540页)用于非参数回归的方法的一种改进。我们报告了比较所提出方法与具有交叉验证和自适应估计的局部正态尺度规则的模拟结果。在大多数情况下,局部带宽和正态尺度规则产生的估计的均方是其他方法的一半大小。还提供了一致性结果。