Suppr超能文献

Relating the classical covariance adjustment techniques of multivariate growth curve models to modern univariate mixed effects models.

作者信息

Mikulich S K, Zerbe G O, Jones R H, Crowley T J

机构信息

Department of Psychiatry, University of Colorado Health Sciences Center, Denver 80262, USA.

出版信息

Biometrics. 1999 Sep;55(3):957-64. doi: 10.1111/j.0006-341x.1999.00957.x.

Abstract

The relationship between the modern univariate mixed model for analyzing longitudinal data, popularized by Laird and Ware (1982, Biometrics 38, 963-974), and its predecessor, the classical multivariate growth curve model, summarized by Grizzle and Allen (1969, Biometrics 25, 357-381), has never been clearly established. Here, the link between the two methodologies is derived, and balanced polynomial and cosinor examples cited in the literature are analyzed with both approaches. Relating the two models demonstrates that classical covariance adjustment for higher-order terms is analogous to including them as random effects in the mixed model. The polynomial example clearly illustrates the relationship between the methodologies and shows their equivalence when all matrices are properly defined. The cosinor example demonstrates how results from each method may differ when the total variance-covariance matrix is positive definite, but that the between-subjects component of that matrix is not so constrained by the growth curve approach. Additionally, advocates of each approach tend to consider different covariance structures. Modern mixed model analysts consider only those terms in a model's expectation (or linear combinations), and preferably the most parsimonious subset, as candidates for random effects. Classical growth curve analysts automatically consider all terms in a model's expectation as random effects and then investigate whether "covariance adjusting" for higher-order terms improves the model. We apply mixed model techniques to cosinor analyses of a large, unbalanced data set to demonstrate the relevance of classical covariance structures that were previously conceived for use only with completely balanced data.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验