Suppr超能文献

大麻素信号传导的神经生物学与进化

The neurobiology and evolution of cannabinoid signalling.

作者信息

Elphick M R, Egertová M

机构信息

School of Biological Sciences, Queen Mary, University of London, London E1 4NS, UK. m.r.elphick@@qmw.ac.uk

出版信息

Philos Trans R Soc Lond B Biol Sci. 2001 Mar 29;356(1407):381-408. doi: 10.1098/rstb.2000.0787.

Abstract

The plant Cannabis sativa has been used by humans for thousands of years because of its psychoactivity. The major psychoactive ingredient of cannabis is Delta(9)-tetrahydrocannabinol, which exerts effects in the brain by binding to a G-protein-coupled receptor known as the CB1 cannabinoid receptor. The discovery of this receptor indicated that endogenous cannabinoids may occur in the brain, which act as physiological ligands for CB1. Two putative endocannabinoid ligands, arachidonylethanolamide ('anandamide') and 2-arachidonylglycerol, have been identified, giving rise to the concept of a cannabinoid signalling system. Little is known about how or where these compounds are synthesized in the brain and how this relates to CB1 expression. However, detailed neuroanatomical and electrophysiological analysis of mammalian nervous systems has revealed that the CB1 receptor is targeted to the presynaptic terminals of neurons where it acts to inhibit release of 'classical' neurotransmitters. Moreover, an enzyme that inactivates endocannabinoids, fatty acid amide hydrolase, appears to be preferentially targeted to the somatodendritic compartment of neurons that are postsynaptic to CB1-expressing axon terminals. Based on these findings, we present here a model of cannabinoid signalling in which anandamide is synthesized by postsynaptic cells and acts as a retrograde messenger molecule to modulate neurotransmitter release from presynaptic terminals. Using this model as a framework, we discuss the role of cannabinoid signalling in different regions of the nervous system in relation to the characteristic physiological actions of cannabinoids in mammals, which include effects on movement, memory, pain and smooth muscle contractility. The discovery of the cannabinoid signalling system in mammals has prompted investigation of the occurrence of this pathway in non-mammalian animals. Here we review the evidence for the existence of cannabinoid receptors in non-mammalian vertebrates and invertebrates and discuss the evolution of the cannabinoid signalling system. Genes encoding orthologues of the mammalian CB1 receptor have been identified in a fish, an amphibian and a bird, indicating that CB1 receptors may occur throughout the vertebrates. Pharmacological actions of cannabinoids and specific binding sites for cannabinoids have been reported in several invertebrate species, but the molecular basis for these effects is not known. Importantly, however, the genomes of the protostomian invertebrates Drosophila melanogaster and Caenorhabditis elegans do not contain CB1 orthologues, indicating that CB1-like cannabinoid receptors may have evolved after the divergence of deuterostomes (e.g. vertebrates and echinoderms) and protostomes. Phylogenetic analysis of the relationship of vertebrate CB1 receptors with other G-protein-coupled receptors reveals that the paralogues that appear to share the most recent common evolutionary origin with CB1 are lysophospholipid receptors, melanocortin receptors and adenosine receptors. Interestingly, as with CB1, each of these receptor types does not appear to have Drosophila orthologues, indicating that this group of receptors may not occur in protostomian invertebrates. We conclude that the cannabinoid signalling system may be quite restricted in its phylogenetic distribution, probably occurring only in the deuterostomian clade of the animal kingdom and possibly only in vertebrates.

摘要

植物大麻因具有精神活性,已被人类使用了数千年。大麻的主要精神活性成分是Δ⁹-四氢大麻酚,它通过与一种名为CB1大麻素受体的G蛋白偶联受体结合,从而在大脑中发挥作用。该受体的发现表明,内源性大麻素可能存在于大脑中,作为CB1的生理配体。现已鉴定出两种假定的内源性大麻素配体,花生四烯酸乙醇胺(“阿南德酰胺”)和2-花生四烯酸甘油,由此产生了大麻素信号系统的概念。关于这些化合物在大脑中的合成方式、合成位置以及它们与CB1表达之间的关系,人们知之甚少。然而,对哺乳动物神经系统进行的详细神经解剖学和电生理学分析表明,CB1受体定位于神经元的突触前终末,在那里它起到抑制“经典”神经递质释放的作用。此外,一种使内源性大麻素失活的酶——脂肪酸酰胺水解酶,似乎优先定位于与表达CB1的轴突终末形成突触后联系的神经元的树突-胞体区域。基于这些发现,我们在此提出一个大麻素信号传导模型,其中阿南德酰胺由突触后细胞合成,并作为逆行信使分子调节突触前终末的神经递质释放。以这个模型为框架,我们讨论大麻素信号传导在神经系统不同区域中的作用,这与大麻素在哺乳动物中的特征性生理作用相关,这些作用包括对运动、记忆、疼痛和平滑肌收缩性的影响。哺乳动物中大麻素信号系统的发现促使人们对该途径在非哺乳动物中的存在情况进行研究。在此,我们综述非哺乳动物脊椎动物和无脊椎动物中存在大麻素受体的证据,并讨论大麻素信号系统的进化。在一种鱼类、一种两栖动物和一种鸟类中已鉴定出编码哺乳动物CB1受体直系同源物的基因,这表明CB1受体可能存在于整个脊椎动物中。在几种无脊椎动物物种中已报道了大麻素的药理作用和大麻素的特异性结合位点,但这些作用的分子基础尚不清楚。然而,重要的是,原口动物无脊椎动物果蝇和秀丽隐杆线虫的基因组中不包含CB1直系同源物,这表明CB1样大麻素受体可能在后口动物(如脊椎动物和棘皮动物)与原口动物分化之后才进化出来。对脊椎动物CB1受体与其他G蛋白偶联受体关系的系统发育分析表明,与CB1似乎具有最近共同进化起源的旁系同源物是溶血磷脂受体、黑皮质素受体和腺苷受体。有趣的是,与CB1一样,这些受体类型中的每一种似乎都没有果蝇直系同源物,这表明这组受体可能不存在于原口动物无脊椎动物中。我们得出结论,大麻素信号系统在系统发育分布上可能相当有限,可能仅存在于动物界的后口动物分支中,甚至可能仅存在于脊椎动物中。

相似文献

1
The neurobiology and evolution of cannabinoid signalling.大麻素信号传导的神经生物学与进化
Philos Trans R Soc Lond B Biol Sci. 2001 Mar 29;356(1407):381-408. doi: 10.1098/rstb.2000.0787.
3
Cannabinoid signalling in the enteric nervous system.肠道神经系统中的大麻素信号传导。
Neurogastroenterol Motil. 2009 Sep;21(9):899-902. doi: 10.1111/j.1365-2982.2009.01372.x.
4
Endocannabinoid signaling in the brain.大脑中的内源性大麻素信号传导
Science. 2002 Apr 26;296(5568):678-82. doi: 10.1126/science.1063545.
5
Molecular biology of cannabinoid receptors.大麻素受体的分子生物学
Prostaglandins Leukot Essent Fatty Acids. 2002 Feb-Mar;66(2-3):123-42. doi: 10.1054/plef.2001.0342.
9
Endocannabinoids affect the reproductive functions in teleosts and amphibians.内源性大麻素影响硬骨鱼和两栖动物的生殖功能。
Mol Cell Endocrinol. 2008 Apr 16;286(1-2 Suppl 1):S41-5. doi: 10.1016/j.mce.2008.01.025. Epub 2008 Feb 9.

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验