Suppr超能文献

腐败希瓦氏菌在食品加工表面的黏附与生物膜形成

Shewanella putrefaciens adhesion and biofilm formation on food processing surfaces.

作者信息

Bagge D, Hjelm M, Johansen C, Huber I, Gram L

机构信息

Danish Institute for Fisheries Research, Department of Seafood Research, Søltofts Plads, c/o Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.

出版信息

Appl Environ Microbiol. 2001 May;67(5):2319-25. doi: 10.1128/AEM.67.5.2319-2325.2001.

Abstract

Laboratory model systems were developed for studying Shewanella putrefaciens adhesion and biofilm formation under batch and flow conditions. S. putrefaciens plays a major role in food spoilage and may cause microbially induced corrosion on steel surfaces. S. putrefaciens bacteria suspended in buffer adhered readily to stainless steel surfaces. Maximum numbers of adherent bacteria per square centimeter were reached in 8 h at 25 degrees C and reflected the cell density in suspension. Numbers of adhering bacteria from a suspension containing 10(8) CFU/ml were much lower in a laminar flow system (modified Robbins device) (reaching 10(2) CFU/cm(2)) than in a batch system (reaching 10(7) CFU/cm(2)), and maximum numbers were reached after 24 h. When nutrients were supplied, S. putrefaciens grew in biofilms with layers of bacteria. The rate of biofilm formation and the thickness of the film were not dependent on the availability of carbohydrate (lactate or glucose) or on iron starvation. The number of S. putrefaciens bacteria on the surface was partly influenced by the presence of other bacteria (Pseudomonas fluorescens) which reduced the numbers of S. putrefaciens bacteria in the biofilm. Numbers of bacteria on the surface must be quantified to evaluate the influence of environmental factors on adhesion and biofilm formation. We used a combination of fluorescence microscopy (4',6'-diamidino-2-phenylindole staining and in situ hybridization, for mixed-culture studies), ultrasonic removal of bacteria from surfaces, and indirect conductometry and found this combination sufficient to quantify bacteria on surfaces.

摘要

已开发出实验室模型系统,用于研究腐败希瓦氏菌在分批培养和流动条件下的黏附及生物膜形成情况。腐败希瓦氏菌在食品腐败过程中起主要作用,并且可能导致钢表面的微生物诱导腐蚀。悬浮在缓冲液中的腐败希瓦氏菌很容易黏附到不锈钢表面。在25摄氏度下8小时内每平方厘米的黏附细菌数量达到最大值,这反映了悬浮液中的细胞密度。在层流系统(改良的Robbins装置)中,来自含有10(8) CFU/ml悬浮液的黏附细菌数量(达到10(2) CFU/cm(2))远低于分批培养系统(达到10(7) CFU/cm(2)),且在24小时后达到最大值。当提供营养物质时,腐败希瓦氏菌在带有细菌层的生物膜中生长。生物膜的形成速率和膜的厚度不依赖于碳水化合物(乳酸盐或葡萄糖)的可用性或铁饥饿情况。表面上腐败希瓦氏菌的数量部分受到其他细菌(荧光假单胞菌)的影响,这些细菌减少了生物膜中腐败希瓦氏菌的数量。必须对表面上的细菌数量进行量化,以评估环境因素对黏附和生物膜形成的影响。我们使用了荧光显微镜(4',6'-二脒基-2-苯基吲哚染色和原位杂交,用于混合培养研究)、从表面超声去除细菌以及间接电导测定法的组合,发现这种组合足以对表面上的细菌进行量化。

相似文献

1
Shewanella putrefaciens adhesion and biofilm formation on food processing surfaces.
Appl Environ Microbiol. 2001 May;67(5):2319-25. doi: 10.1128/AEM.67.5.2319-2325.2001.
5
Food-Safe Modification of Stainless Steel Food-Processing Surfaces to Reduce Bacterial Biofilms.
ACS Appl Mater Interfaces. 2018 Jul 11;10(27):22902-22912. doi: 10.1021/acsami.8b03788. Epub 2018 Jun 28.
6
Scanning electron microscopy of Salmonella biofilms on various food-contact surfaces in catfish mucus.
Food Microbiol. 2018 Sep;74:143-150. doi: 10.1016/j.fm.2018.03.013. Epub 2018 Mar 29.
7
Influence of marine Shewanella putrefaciens and mediated calcium deposition on Q235 carbon steel corrosion.
Bioelectrochemistry. 2024 Jun;157:108657. doi: 10.1016/j.bioelechem.2024.108657. Epub 2024 Feb 5.
9
Resistance of pathogenic bacteria on the surface of stainless steel depending on attachment form and efficacy of chemical sanitizers.
Int J Food Microbiol. 2012 Feb 15;153(3):465-73. doi: 10.1016/j.ijfoodmicro.2011.12.017. Epub 2011 Dec 19.
10
Interactions between spoilage bacteria in tri-species biofilms developed under simulated meat processing conditions.
Food Microbiol. 2019 Sep;82:515-522. doi: 10.1016/j.fm.2019.03.022. Epub 2019 Mar 22.

引用本文的文献

2
, a rare human pathogen: A review from a clinical perspective.
Front Cell Infect Microbiol. 2023 Feb 2;12:1033639. doi: 10.3389/fcimb.2022.1033639. eCollection 2022.
3
Identification of as a novel pathogen of the largemouth bass () and histopathological analysis of diseased fish.
Front Cell Infect Microbiol. 2022 Oct 17;12:1042977. doi: 10.3389/fcimb.2022.1042977. eCollection 2022.
4
Comparative Transcriptome Analysis of WS13 Biofilms Under Cold Stress.
Front Cell Infect Microbiol. 2022 Jun 22;12:851521. doi: 10.3389/fcimb.2022.851521. eCollection 2022.
5
Biosurfactants: Secondary Metabolites Involved in the Process of Bioremediation and Biofilm Removal.
Appl Biochem Biotechnol. 2023 Sep;195(9):5541-5567. doi: 10.1007/s12010-022-03951-3. Epub 2022 May 17.
6
Antibacterial efficacy and possible mechanism of action of 2-hydroxyisocaproic acid (HICA).
PLoS One. 2022 Apr 1;17(4):e0266406. doi: 10.1371/journal.pone.0266406. eCollection 2022.
7
Biofilm formation potential of Bacillus toyonensis and Pseudomonas aeruginosa on the stainless steel test surfaces in a model dairy batch system.
Folia Microbiol (Praha). 2022 Jun;67(3):405-417. doi: 10.1007/s12223-021-00940-7. Epub 2022 Jan 15.
8
Regulation of colony morphology and biofilm formation in Shewanella algae.
Microb Biotechnol. 2021 May;14(3):1183-1200. doi: 10.1111/1751-7915.13788. Epub 2021 Mar 25.
9
Influence of Selected Factors on Biofilm Formation by Strains.
Microorganisms. 2020 Dec 25;9(1):43. doi: 10.3390/microorganisms9010043.
10
Comparative Proteome Analysis of WS13 Mature Biofilm Under Cold Stress.
Front Microbiol. 2020 Jun 9;11:1225. doi: 10.3389/fmicb.2020.01225. eCollection 2020.

本文引用的文献

2
Molecular and Metabolic Typing of Resident and Transient Fluorescent Pseudomonad Flora from a Meat Mincer.
J Food Prot. 1997 Dec;60(12):1515-1519. doi: 10.4315/0362-028X-60.12.1515.
3
Effect of Nutrients on Biofilm Formation by Listeria monocytogenes on Stainless Steel.
J Food Prot. 1995 Jan;58(1):24-28. doi: 10.4315/0362-028X-58.1.24.
4
Biofilm Formation by Listeria monocytogenes Utilizes a Primary Colonizing Microorganism in Flowing Systems.
J Food Prot. 1993 Dec;56(12):1022-1028. doi: 10.4315/0362-028X-56.12.1022.
5
Effect of Cleaners and Sanitizers on Listeria monocytogenes Attached to Product Contact Surfaces.
J Food Prot. 1992 Apr;55(4):246-251. doi: 10.4315/0362-028X-55.4.246.
6
Influence of hydrodynamics and nutrients on biofilm structure.
J Appl Microbiol. 1998 Dec;85 Suppl 1:19S-28S. doi: 10.1111/j.1365-2672.1998.tb05279.x.
9
Deflocculation of Activated Sludge by the Dissimilatory Fe(III)-Reducing Bacterium Shewanella alga BrY.
Appl Environ Microbiol. 1996 Apr;62(4):1487-90. doi: 10.1128/aem.62.4.1487-1490.1996.
10
Surface changes in mild steel coupons from the action of corrosion-causing bacteria.
Appl Environ Microbiol. 1981 Mar;41(3):766-74. doi: 10.1128/aem.41.3.766-774.1981.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验