Schaschke N, Matschiner G, Zettl F, Marquardt U, Bergner A, Bode W, Sommerhoff C P, Moroder L
Max-Planck-Institut für Biochemie, Am Klopferspitz 18a, D-82152 Martinsried, Germany.
Chem Biol. 2001 Apr;8(4):313-27. doi: 10.1016/s1074-5521(01)00011-4.
Human beta-tryptase is a mast cell specific trypsin-like serine protease that is thought to play a key role in the pathogenesis of diverse allergic and inflammatory disorders like asthma and psoriasis. The recently resolved crystal structure revealed that the enzymatically active tetramer consists of four quasi-identical monomers. The spatial display of the four identical active sites represents an ideal basis for the rational design of bivalent inhibitors.
Based on modeling experiments homobivalent inhibitors were constructed using (i) 6A,6D-dideoxy-6A,6D-diamino-beta-cyclodextrin as a rigid template to bridge the space between the two pairs of identical active sites and (ii) 3-(aminomethyl)benzene as a headgroup to occupy the arginine/lysine specific S1 subsites. A comparative analysis of the inhibitory potencies of synthetic constructs that differ in size and type of the spacer between headgroup and template revealed that the construct contained two 3-(aminomethyl)benzenesulfonyl-glycine groups linked to the 6A,6D-diamino groups of beta-cyclodextrin as an almost ideal bivalent inhibitor with a cooperativity factor of 1.9 vs. the ideal value of 2. The bivalent binding mode is supported by the inhibitor/tetramer ratio of 2:1 required for inactivation of tryptase and by X-ray analysis of the inhibitor/tryptase complex.
The results obtained with the rigid cyclodextrin template underlined the importance of a minimal loss of conformational entropy in bivalent binding, but also showed the limitations imposed by such rigid core molecules in terms of optimal occupancy of binding sites and thus of enthalpic strains in bidentate binding modes. The main advantage of bivalent inhibitors is their high selectivity for the target enzyme that can be achieved utilizing the principle of multivalency.
人β-胰蛋白酶是一种肥大细胞特异性的胰蛋白酶样丝氨酸蛋白酶,被认为在多种过敏性和炎症性疾病(如哮喘和牛皮癣)的发病机制中起关键作用。最近解析的晶体结构表明,具有酶活性的四聚体由四个近乎相同的单体组成。四个相同活性位点的空间排列为二价抑制剂的合理设计提供了理想基础。
基于模型实验构建了同二价抑制剂,使用(i)6A,6D-二脱氧-6A,6D-二氨基-β-环糊精作为刚性模板来桥接两对相同活性位点之间的空间,以及(ii)3-(氨基甲基)苯作为头基来占据精氨酸/赖氨酸特异性的S1亚位点。对合成构建体(其头基与模板之间间隔的大小和类型不同)的抑制效力进行比较分析表明,包含两个与β-环糊精的6A,6D-二氨基相连的3-(氨基甲基)苯磺酰甘氨酸基团的构建体是一种近乎理想的二价抑制剂,协同因子为1.9,而理想值为2。胰蛋白酶失活所需的抑制剂/四聚体比例为2:1以及抑制剂/胰蛋白酶复合物的X射线分析均支持二价结合模式。
使用刚性环糊精模板获得的结果强调了二价结合中构象熵最小损失的重要性,但也显示了这种刚性核心分子在结合位点最佳占据以及因此在双齿结合模式中的焓应变方面所带来的局限性。二价抑制剂的主要优点是利用多价原理可实现对靶酶的高选择性。