Suppr超能文献

来自黄孢原毛平革菌的锰过氧化物酶中Glu39在锰(II)结合和氧化中的作用。

The role of Glu39 in MnII binding and oxidation by manganese peroxidase from Phanerochaete chrysoporium.

作者信息

Youngs H L, Sollewijn Gelpke M D, Li D, Sundaramoorthy M, Gold M H

机构信息

Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Portland, Oregon 97291-1000, USA.

出版信息

Biochemistry. 2001 Feb 20;40(7):2243-50. doi: 10.1021/bi002104s.

Abstract

Manganese peroxidase (MnP) is a heme-containing enzyme produced by white-rot fungi and is part of the extracellular lignin degrading system in these organisms. MnP is unique among Mn binding enzymes in its ability to bind and oxidize Mn(II) and efficiently release Mn(III). Initial site-directed mutagenesis studies identified the residues E35, E39, and D179 as the Mn binding ligands. However, an E39D variant was recently reported to display wild-type Mn binding and rate of oxidation, calling into question the role of E39 as an Mn ligand. To investigate this hypothesis, we performed computer modeling studies which indicated metal-ligand bond distances in the E39D variant and in an E35D--E39D--D179E triple variant which might allow Mn binding and oxidation. To test the model, we reconstructed the E35D and E39D variants used in the previous study, as well as an E39A single variant and the E35D--E39D--D179E triple variant of MnP isozyme 1 from Phanerochaete chrysosporium. We find that all of the variant proteins are impaired for Mn(II) binding (K(m) increases 20--30-fold) and Mn(II) oxidation (k(cat) decreases 50--400-fold) in both the steady state and the transient state. In particular, mutation of the E39 residue in MnP decreases both Mn binding and oxidation. The catalytic efficiency of the E39A variants decreased approximately 10(4)-fold, while that of the E39D variant decreased approximately 10(3)-fold. Contrary to initial modeling results, the triple variant performed only as well as any of the single Mn ligand variants. Interestingly, the catalytic efficiency of the triple variant decreased only 10(4)-fold, which is approximately 10(2)-fold better than that reported for the E35Q--D179N double variant. These combined studies indicate that precise geometry of the Mn ligands within the Mn binding site of MnP is essential for the efficient binding, oxidation, and release of Mn by this enzyme. The results clearly indicate that E39 is a Mn ligand and that mutation of this ligand decreases both Mn binding and the rate of Mn oxidation.

摘要

锰过氧化物酶(MnP)是一种由白腐真菌产生的含血红素的酶,是这些生物体细胞外木质素降解系统的一部分。MnP在与锰结合的酶中具有独特之处,它能够结合并氧化Mn(II),并有效地释放出Mn(III)。最初的定点诱变研究确定E35、E39和D179残基为锰结合配体。然而,最近有报道称E39D变体表现出野生型的锰结合和氧化速率,这使得E39作为锰配体的作用受到质疑。为了研究这一假设,我们进行了计算机建模研究,结果表明E39D变体和E35D - E39D - D179E三变体中的金属 - 配体键距可能允许锰的结合和氧化。为了验证该模型,我们重建了先前研究中使用的E35D和E39D变体,以及来自黄孢原毛平革菌的MnP同工酶1的E39A单变体和E35D - E39D - D179E三变体。我们发现,所有变体蛋白在稳态和瞬态下的Mn(II)结合(K_m增加20 - 30倍)和Mn(II)氧化(k_cat降低50 - 400倍)均受损。特别是,MnP中E39残基的突变会降低锰的结合和氧化。E39A变体的催化效率降低了约10^4倍,而E39D变体的催化效率降低了约10^3倍。与最初的建模结果相反,三变体的表现仅与任何单个锰配体变体相当。有趣的是,三变体的催化效率仅降低了10^4倍,这比报道的E35Q - D179N双变体约好10^2倍。这些综合研究表明,MnP锰结合位点内锰配体的精确几何结构对于该酶有效结合、氧化和释放锰至关重要。结果清楚地表明E39是一个锰配体,该配体的突变会降低锰的结合和锰氧化速率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验