Suppr超能文献

超高分辨率(0.93A)的黄孢原毛平革菌锰过氧化物酶结构:对催化机制的启示。

Ultrahigh (0.93A) resolution structure of manganese peroxidase from Phanerochaete chrysosporium: implications for the catalytic mechanism.

机构信息

Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN 37232, United States.

出版信息

J Inorg Biochem. 2010 Jun;104(6):683-90. doi: 10.1016/j.jinorgbio.2010.02.011. Epub 2010 Mar 6.

Abstract

Manganese peroxidase (MnP) is an extracellular heme enzyme produced by the lignin-degrading white-rot fungus Phanerochaete chrysosporium. MnP catalyzes the peroxide-dependent oxidation of Mn(II) to Mn(III). The Mn(III) is released from the enzyme in complex with oxalate, enabling the oxalate-Mn(III) complex to serve as a diffusible redox mediator capable of oxidizing lignin, especially under the mediation of unsaturated fatty acids. One heme propionate and the side chains of Glu35, Glu39 and Asp179 have been identified as Mn(II) ligands in our previous crystal structures of native MnP. In our current work, new 0.93A and 1.05A crystal structures of MnP with and without bound Mn(II), respectively, have been solved. This represents only the sixth structure of a protein of this size at 0.93A resolution. In addition, this is the first structure of a heme peroxidase from a eukaryotic organism at sub-Angstrom resolution. These new structures reveal an ordering/disordering of the C-terminal loop, which is likely required for Mn binding and release. In addition, the catalytic Arg42 residue at the active site, normally thought to function only in the peroxide activation process, also undergoes ordering/disordering that is coupled to a transient H-bond with the Mn ligand, Glu39. Finally, these high-resolution structures also reveal the exact H atoms in several parts of the structure that are relevant to the catalytic mechanism.

摘要

锰过氧化物酶(MnP)是一种由木质素降解白腐真菌 Phanerochaete chrysosporium 产生的细胞外血红素酶。MnP 催化过氧化物依赖的 Mn(II)氧化为 Mn(III)。Mn(III)与草酸盐形成复合物从酶中释放出来,使草酸盐-Mn(III)复合物能够作为可扩散的氧化还原介体,能够氧化木质素,特别是在不饱和脂肪酸的介导下。在我们之前的天然 MnP 晶体结构中,已经鉴定出一个血红素丙酸盐和 Glu35、Glu39 和 Asp179 的侧链作为 Mn(II)配体。在我们目前的工作中,分别解决了具有和不具有结合的 Mn(II)的 MnP 的新的 0.93A 和 1.05A 晶体结构。这仅代表该大小的蛋白质在 0.93A 分辨率下的第六个结构。此外,这是亚埃分辨率下真核生物血红素过氧化物酶的第一个结构。这些新结构揭示了 C 末端环的有序/无序,这可能是 Mn 结合和释放所必需的。此外,活性位点的催化 Arg42 残基,通常被认为仅在过氧化物激活过程中起作用,也经历有序/无序,与 Mn 配体 Glu39 形成瞬时氢键。最后,这些高分辨率结构还揭示了与催化机制相关的结构中几个部分的确切 H 原子。

相似文献

1
Ultrahigh (0.93A) resolution structure of manganese peroxidase from Phanerochaete chrysosporium: implications for the catalytic mechanism.
J Inorg Biochem. 2010 Jun;104(6):683-90. doi: 10.1016/j.jinorgbio.2010.02.011. Epub 2010 Mar 6.
2
High-resolution crystal structure of manganese peroxidase: substrate and inhibitor complexes.
Biochemistry. 2005 May 3;44(17):6463-70. doi: 10.1021/bi047318e.
6
Engineering of a manganese-binding site in lignin peroxidase isozyme H8 from Phanerochaete chrysosporium.
Biochem Biophys Res Commun. 2001 Jun 15;284(3):723-8. doi: 10.1006/bbrc.2001.5015.
7
Site-directed mutagenesis of manganese peroxidase from Phanerochaete chrysosporium in an in vitro expression system.
J Biotechnol. 2009 Jan 15;139(2):176-8. doi: 10.1016/j.jbiotec.2008.10.006. Epub 2008 Nov 5.
10
Inactivating effect of phenolic unit structures on the biodegradation of lignin by lignin peroxidase from Phanerochaete chrysosporium.
Enzyme Microb Technol. 2014 Jul-Aug;61-62:48-54. doi: 10.1016/j.enzmictec.2014.04.013. Epub 2014 May 1.

引用本文的文献

1
Improving the binding affinity of plastic degrading cutinase with polyethylene terephthalate (PET) and polyurethane (PU); an in-silico study.
Heliyon. 2025 Jan 7;11(2):e41640. doi: 10.1016/j.heliyon.2025.e41640. eCollection 2025 Jan 30.
3
HetMM: A Michaelis-Menten model for non-homogeneous enzyme mixtures.
iScience. 2024 Jan 19;27(2):108977. doi: 10.1016/j.isci.2024.108977. eCollection 2024 Feb 16.
4
Enzymatic degradation of plant biomass and synthetic polymers.
Nat Rev Chem. 2020 Mar;4(3):114-126. doi: 10.1038/s41570-020-0163-6. Epub 2020 Feb 21.
5
A mutant R70V/E166A of short manganese peroxidase showing Mn-independent dye decolorization.
Appl Microbiol Biotechnol. 2023 Apr;107(7-8):2303-2319. doi: 10.1007/s00253-023-12438-y. Epub 2023 Feb 27.
7
Fungal Enzymes Involved in Plastics Biodegradation.
Microorganisms. 2022 Jun 8;10(6):1180. doi: 10.3390/microorganisms10061180.
8
Textile Dye Biodecolorization by Manganese Peroxidase: A Review.
Molecules. 2021 Jul 21;26(15):4403. doi: 10.3390/molecules26154403.
9
Structure of Yak Lactoperoxidase at 1.55 Å Resolution.
Protein J. 2021 Feb;40(1):8-18. doi: 10.1007/s10930-020-09957-2. Epub 2021 Jan 3.
10
Pursuing the Elixir of Life: In Vivo Antioxidative Effects of Manganosalen Complexes.
Antioxidants (Basel). 2020 Aug 10;9(8):727. doi: 10.3390/antiox9080727.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
3
SHELXL: high-resolution refinement.
Methods Enzymol. 1997;277:319-43.
4
Atomic resolution crystallography reveals how changes in pH shape the protein microenvironment.
Nat Chem Biol. 2006 May;2(5):259-64. doi: 10.1038/nchembio784. Epub 2006 Apr 9.
5
High-resolution crystal structure of manganese peroxidase: substrate and inhibitor complexes.
Biochemistry. 2005 May 3;44(17):6463-70. doi: 10.1021/bi047318e.
10
The structures of Micrococcus lysodeikticus catalase, its ferryl intermediate (compound II) and NADPH complex.
Acta Crystallogr D Biol Crystallogr. 2002 Dec;58(Pt 12):1972-82. doi: 10.1107/s0907444902016566. Epub 2002 Nov 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验