Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN 37232, United States.
J Inorg Biochem. 2010 Jun;104(6):683-90. doi: 10.1016/j.jinorgbio.2010.02.011. Epub 2010 Mar 6.
Manganese peroxidase (MnP) is an extracellular heme enzyme produced by the lignin-degrading white-rot fungus Phanerochaete chrysosporium. MnP catalyzes the peroxide-dependent oxidation of Mn(II) to Mn(III). The Mn(III) is released from the enzyme in complex with oxalate, enabling the oxalate-Mn(III) complex to serve as a diffusible redox mediator capable of oxidizing lignin, especially under the mediation of unsaturated fatty acids. One heme propionate and the side chains of Glu35, Glu39 and Asp179 have been identified as Mn(II) ligands in our previous crystal structures of native MnP. In our current work, new 0.93A and 1.05A crystal structures of MnP with and without bound Mn(II), respectively, have been solved. This represents only the sixth structure of a protein of this size at 0.93A resolution. In addition, this is the first structure of a heme peroxidase from a eukaryotic organism at sub-Angstrom resolution. These new structures reveal an ordering/disordering of the C-terminal loop, which is likely required for Mn binding and release. In addition, the catalytic Arg42 residue at the active site, normally thought to function only in the peroxide activation process, also undergoes ordering/disordering that is coupled to a transient H-bond with the Mn ligand, Glu39. Finally, these high-resolution structures also reveal the exact H atoms in several parts of the structure that are relevant to the catalytic mechanism.
锰过氧化物酶(MnP)是一种由木质素降解白腐真菌 Phanerochaete chrysosporium 产生的细胞外血红素酶。MnP 催化过氧化物依赖的 Mn(II)氧化为 Mn(III)。Mn(III)与草酸盐形成复合物从酶中释放出来,使草酸盐-Mn(III)复合物能够作为可扩散的氧化还原介体,能够氧化木质素,特别是在不饱和脂肪酸的介导下。在我们之前的天然 MnP 晶体结构中,已经鉴定出一个血红素丙酸盐和 Glu35、Glu39 和 Asp179 的侧链作为 Mn(II)配体。在我们目前的工作中,分别解决了具有和不具有结合的 Mn(II)的 MnP 的新的 0.93A 和 1.05A 晶体结构。这仅代表该大小的蛋白质在 0.93A 分辨率下的第六个结构。此外,这是亚埃分辨率下真核生物血红素过氧化物酶的第一个结构。这些新结构揭示了 C 末端环的有序/无序,这可能是 Mn 结合和释放所必需的。此外,活性位点的催化 Arg42 残基,通常被认为仅在过氧化物激活过程中起作用,也经历有序/无序,与 Mn 配体 Glu39 形成瞬时氢键。最后,这些高分辨率结构还揭示了与催化机制相关的结构中几个部分的确切 H 原子。