Suppr超能文献

小鼠和人类HCN2及HCN4通道电压门控中的模式转变。

Mode shifts in the voltage gating of the mouse and human HCN2 and HCN4 channels.

作者信息

Elinder Fredrik, Männikkö Roope, Pandey Shilpi, Larsson H Peter

机构信息

Department of Biomedicine and Surgery, Division of Cell Biology, Linköpings Universitet, SE-581 85 Linköping, Sweden.

出版信息

J Physiol. 2006 Sep 1;575(Pt 2):417-31. doi: 10.1113/jphysiol.2006.110437. Epub 2006 Jun 15.

Abstract

Hyperpolarization-activated, cyclic-nucleotide-gated (HCN) channels regulate pacemaker activity in the heart and the brain. Previously, we showed that spHCN and HCN1 channels undergo mode shifts in their voltage dependences, shifting the conductance versus voltage curves by more than +50 mV when measured from a hyperpolarized potential compared to a depolarized potential. In addition, the kinetics of the ionic currents changed in parallel to these voltage shifts. In the studies reported here, we tested whether slower cardiac HCN channels also display similar mode shifts. We found that HCN2 and HCN4 channels expressed in oocytes from the frog Xenopus laevis do not display the activation kinetic changes that we observed in spHCN and HCN1. However, HCN2 and HCN4 channels display changes in their tail currents, suggesting that these channels also undergo mode shifts and that the conformational changes underlying the mode shifts are due to conserved aspects of HCN channels. With computer modelling, we show that in channels with relatively slow opening kinetics and fast mode-shift transitions, such as HCN2 and HCN4 channels, the mode shift effects are not readily observable, except in the tail kinetics. Computer simulations of sino-atrial node action potentials suggest that the HCN2 channel, together with the HCN1 channel, are important regulators of the heart firing frequency and that the mode shift is an important property to prevent arrhythmic firing. We conclude that although all HCN channels appear to undergo mode shifts - and thus may serve to prevent arrhythmic firing - it is mainly observable in ionic currents from HCN channels with faster kinetics.

摘要

超极化激活的环核苷酸门控(HCN)通道调节心脏和大脑中的起搏活动。此前,我们发现spHCN和HCN1通道的电压依赖性会发生模式转变,与从去极化电位测量相比,从超极化电位测量时,其电导-电压曲线会发生超过+50 mV的偏移。此外,离子电流的动力学与这些电压偏移平行变化。在本文报道的研究中,我们测试了较慢的心脏HCN通道是否也表现出类似的模式转变。我们发现,非洲爪蟾卵母细胞中表达的HCN2和HCN4通道并未表现出我们在spHCN和HCN1中观察到的激活动力学变化。然而,HCN2和HCN4通道的尾电流出现了变化,这表明这些通道也经历了模式转变,且模式转变背后的构象变化是由于HCN通道的保守特性所致。通过计算机建模,我们表明,在具有相对较慢开放动力学和快速模式转变过渡的通道中,如HCN2和HCN4通道,除了尾电流动力学外,模式转变效应不易观察到。窦房结动作电位的计算机模拟表明,HCN2通道与HCN1通道一起,是心脏起搏频率的重要调节因子,且模式转变是防止心律失常性起搏的重要特性。我们得出结论,尽管所有HCN通道似乎都会发生模式转变——因此可能有助于防止心律失常性起搏——但主要在动力学较快的HCN通道的离子电流中可观察到这种现象。

相似文献

10
S4 movement in a mammalian HCN channel.哺乳动物超极化激活的环核苷酸门控通道中的S4运动
J Gen Physiol. 2004 Jan;123(1):21-32. doi: 10.1085/jgp.200308916. Epub 2003 Dec 15.

引用本文的文献

2
Pacemaker Channels and the Chronotropic Response in Health and Disease.起搏器通道与健康和疾病中的变时性反应。
Circ Res. 2024 May 10;134(10):1348-1378. doi: 10.1161/CIRCRESAHA.123.323250. Epub 2024 May 9.
4
Two HCN4 Channels Play Functional Roles in the Zebrafish Heart.两个HCN4通道在斑马鱼心脏中发挥功能作用。
Front Physiol. 2022 Jun 30;13:901571. doi: 10.3389/fphys.2022.901571. eCollection 2022.
6
Paradigm shift: new concepts for HCN4 function in cardiac pacemaking.范式转变:HCN4 在心脏起搏中的新功能概念。
Pflugers Arch. 2022 Jul;474(7):649-663. doi: 10.1007/s00424-022-02698-4. Epub 2022 May 13.
8
Hysteretic Behavior in Voltage-Gated Channels.电压门控通道中的滞后行为。
Front Pharmacol. 2020 Nov 2;11:579596. doi: 10.3389/fphar.2020.579596. eCollection 2020.
10
Modulation of K7 Channel Deactivation by PI(4,5)P.PI(4,5)P对K7通道失活的调节作用
Front Pharmacol. 2020 Jun 19;11:895. doi: 10.3389/fphar.2020.00895. eCollection 2020.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验