Sur C, Wafford K A, Reynolds D S, Hadingham K L, Bromidge F, Macaulay A, Collinson N, O'Meara G, Howell O, Newman R, Myers J, Atack J R, Dawson G R, McKernan R M, Whiting P J, Rosahl T W
Neuroscience Research Center, Merck Sharp and Dohme Research Laboratories, Harlow, Essex, CM20 2QR, United Kingdom.
J Neurosci. 2001 May 15;21(10):3409-18. doi: 10.1523/JNEUROSCI.21-10-03409.2001.
The alpha1beta2gamma2 is the most abundant subtype of the GABA(A) receptor and is localized in many regions of the brain. To gain more insight into the role of this receptor subtype in the modulation of inhibitory neurotransmission, we generated mice lacking either the alpha1 or beta2 subunit. In agreement with the reported abundance of this subtype, >50% of total GABA(A) receptors are lost in both alpha1-/- and beta2-/- mice. Surprisingly, homozygotes of both mouse lines are viable, fertile, and show no spontaneous seizures. Initially half of the alpha1-/- mice died prenatally or perinatally, but they exhibited a lower mortality rate in subsequent generations, suggesting some phenotypic drift and adaptive changes. Both adult alpha1-/- and beta2-/- mice demonstrate normal performances on the rotarod, but beta2-/- mice displayed increased locomotor activity. Purkinje cells of the cerebellum primarily express alpha1beta2gamma2 receptors, and in electrophysiological recordings from alpha1-/- mice GABA currents in these neurons are dramatically reduced, and residual currents have a benzodiazepine pharmacology characteristic of alpha2- or alpha3-containing receptors. In contrast, the cerebellar Purkinje neurons from beta2-/- mice have only a relatively small reduction of GABA currents. In beta2-/- mice expression levels of all six alpha subunits are reduced by approximately 50%, suggesting that the beta2 subunit can coassemble with alpha subunits other than just alpha1. Our data confirm that alpha1beta2gamma2 is the major GABA(A) receptor subtype in the murine brain and demonstrate that, surprisingly, the loss of this receptor subtype is not lethal.
α1β2γ2是GABA(A)受体中最为丰富的亚型,定位于大脑的许多区域。为了更深入了解该受体亚型在抑制性神经传递调节中的作用,我们培育了缺失α1或β2亚基的小鼠。与该亚型报道的丰度一致,α1-/-和β2-/-小鼠中超过50%的总GABA(A)受体丧失。令人惊讶的是,这两种小鼠品系的纯合子均存活、可育且无自发癫痫发作。最初,一半的α1-/-小鼠在产前或围产期死亡,但在随后几代中它们的死亡率较低,表明存在一些表型漂移和适应性变化。成年α1-/-和β2-/-小鼠在转棒试验中表现正常,但β2-/-小鼠的运动活性增加。小脑的浦肯野细胞主要表达α1β2γ2受体,在α1-/-小鼠的电生理记录中,这些神经元中的GABA电流显著降低,残余电流具有含α2或α3受体的苯二氮䓬药理学特征。相比之下,β2-/-小鼠的小脑浦肯野神经元的GABA电流仅相对小幅降低。在β2-/-小鼠中,所有六个α亚基的表达水平均降低约50%,表明β2亚基不仅可以与α1亚基共同组装,还可以与其他α亚基共同组装。我们的数据证实α1β2γ2是小鼠脑中主要的GABA(A)受体亚型,并令人惊讶地证明该受体亚型的缺失并非致命。