Suppr超能文献

热应激有助于增强心脏线粒体复合物的活性。

Heat stress contributes to the enhancement of cardiac mitochondrial complex activity.

作者信息

Sammut I A, Jayakumar J, Latif N, Rothery S, Severs N J, Smolenski R T, Bates T E, Yacoub M H

机构信息

Departments of Cardiothoracic Surgery, and Cardiac Medicine, National Heart and Lung Institute, Imperial College School of Medicine, London, United Kingdom.

出版信息

Am J Pathol. 2001 May;158(5):1821-31. doi: 10.1016/S0002-9440(10)64138-7.

Abstract

Hyperthermic stress is known to protect against myocardial dysfunction after ischemia-reperfusion injury. It is unclear however, what energetic mechanisms are affected by the molecular adaptation to heat stress. We hypothesized that mild hyperthermic stress can increase mitochondrial respiratory enzyme activity, affording protection to mitochondrial energetics during prolonged cardiac preservation for transplantation. Rat hearts were excised after heat-stress or sham treatment and subjected to cold cardioplegic arrest and ischemia followed by reperfusion in an ex vivo perfusion system. Cardiac function, mitochondrial respiratory, and complex activities were assessed before and after ischemia. Heat shock protein (Hsp 32, 60, and 72) expression was increased in heat-stressed hearts. This was associated with increased mitochondrial complex activities in heat-stress versus sham-treated groups for complex I-V. During reperfusion, higher complex activities and respiratory control ratios were observed in heat-stressed versus sham-treated groups. Recovery of ventricular function was improved in heat-stressed hearts. Furthermore, mitochondria in reperfused heat-stressed myocardium exhibited intact membranes with packed, parallel, lamellar cristae, whereas in sham-treated myocardium, mitochondria were severely disrupted. This study provides the first evidence of heat-stress-mediated enhancement of mitochondrial energetic capacity. This is associated with increased tolerance to ischemia-reperfusion injury. Protection by heat stress against myocardial dysfunction may be partially due to enhancement of mitochondrial energetics.

摘要

已知热应激可预防缺血再灌注损伤后的心肌功能障碍。然而,尚不清楚分子适应热应激会影响哪些能量机制。我们推测,轻度热应激可增加线粒体呼吸酶活性,在延长心脏移植保存时间期间为线粒体能量代谢提供保护。热应激或假处理后切除大鼠心脏,并在离体灌注系统中进行冷停搏和缺血,随后再灌注。在缺血前后评估心脏功能、线粒体呼吸和复合物活性。热应激心脏中热休克蛋白(Hsp 32、60和72)表达增加。这与热应激组与假处理组相比,复合物I-V的线粒体复合物活性增加有关。在再灌注期间,热应激组与假处理组相比观察到更高的复合物活性和呼吸控制率。热应激心脏的心室功能恢复得到改善。此外,再灌注的热应激心肌中的线粒体表现出完整的膜,嵴紧密、平行、呈板层状,而在假处理的心肌中,线粒体严重受损。本研究首次证明了热应激介导的线粒体能量代谢能力增强。这与对缺血再灌注损伤的耐受性增加有关。热应激对心肌功能障碍的保护作用可能部分归因于线粒体能量代谢的增强。

相似文献

1
Heat stress contributes to the enhancement of cardiac mitochondrial complex activity.
Am J Pathol. 2001 May;158(5):1821-31. doi: 10.1016/S0002-9440(10)64138-7.
2
Cardiac mitochondrial complex activity is enhanced by heat shock proteins.
Clin Exp Pharmacol Physiol. 2003 Jan-Feb;30(1-2):110-5. doi: 10.1046/j.1440-1681.2003.03799.x.
3
Cold cardioplegic arrest enhances heat shock protein 70 in the heat-shocked rat heart.
J Thorac Cardiovasc Surg. 2001 Jun;121(6):1130-6. doi: 10.1067/mtc.2001.113934.
4
Reversible blockade of electron transport during ischemia protects mitochondria and decreases myocardial injury following reperfusion.
J Pharmacol Exp Ther. 2006 Dec;319(3):1405-12. doi: 10.1124/jpet.106.110262. Epub 2006 Sep 21.
7
Heat stress attenuates ATP-depletion and pH-decrease during cardioplegic arrest.
J Surg Res. 2007 May 15;139(2):176-81. doi: 10.1016/j.jss.2006.07.041. Epub 2007 Mar 2.

引用本文的文献

2
Inflammatory response in dairy cows caused by heat stress and biological mechanisms for maintaining homeostasis.
PLoS One. 2024 Mar 25;19(3):e0300719. doi: 10.1371/journal.pone.0300719. eCollection 2024.
3
The carbon monoxide prodrug oCOm-21 increases Ca sensitivity of the cardiac myofilament.
Physiol Rep. 2024 Mar;12(6):e15974. doi: 10.14814/phy2.15974.
4
The impact of heat therapy on neuromuscular function and muscle atrophy in diabetic rats.
Front Physiol. 2023 Jan 5;13:1039588. doi: 10.3389/fphys.2022.1039588. eCollection 2022.
5
Cytochrome c Oxidase Inhibition by ATP Decreases Mitochondrial ROS Production.
Cells. 2022 Mar 14;11(6):992. doi: 10.3390/cells11060992.
6
Skeletal muscle adaptations to heat therapy.
J Appl Physiol (1985). 2020 Jun 1;128(6):1635-1642. doi: 10.1152/japplphysiol.00061.2020. Epub 2020 Apr 30.
8
Heat shock protein 70 (Hsp70) inhibits oxidative phosphorylation and compensates ATP balance through enhanced glycolytic activity.
J Appl Physiol (1985). 2012 Dec 1;113(11):1669-76. doi: 10.1152/japplphysiol.00658.2012. Epub 2012 Oct 4.
9
Mitochondrial dysfunction induced by heat stress in cultured rat CNS neurons.
J Neurophysiol. 2012 Oct;108(8):2203-14. doi: 10.1152/jn.00638.2011. Epub 2012 Jul 25.

本文引用的文献

1
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
3
Time-dependent impairment of mitochondrial function after storage and transplantation of rabbit kidneys.
Transplantation. 2000 Apr 15;69(7):1265-75. doi: 10.1097/00007890-200004150-00011.
4
The chaperonin-related protein Tcm62p ensures mitochondrial gene expression under heat stress.
FEBS Lett. 2000 Mar 31;470(3):365-9. doi: 10.1016/s0014-5793(00)01322-3.
5
HSP70 induction in the brain following ethanol administration in the rat: regulation by glutathione redox state.
Biochem Biophys Res Commun. 2000 Mar 16;269(2):397-400. doi: 10.1006/bbrc.2000.2311.
8
Bilirubin, formed by activation of heme oxygenase-2, protects neurons against oxidative stress injury.
Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):2445-50. doi: 10.1073/pnas.96.5.2445.
9
Mitochondrial disease in superoxide dismutase 2 mutant mice.
Proc Natl Acad Sci U S A. 1999 Feb 2;96(3):846-51. doi: 10.1073/pnas.96.3.846.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验