Suppr超能文献

关于表达比率的差异变异性:改进从微阵列数据推断基因表达变化的统计方法。

On differential variability of expression ratios: improving statistical inference about gene expression changes from microarray data.

作者信息

Newton M A, Kendziorski C M, Richmond C S, Blattner F R, Tsui K W

机构信息

Department of Statistics, University of Wisconsin, Madison, WI 53792, USA.

出版信息

J Comput Biol. 2001;8(1):37-52. doi: 10.1089/106652701300099074.

Abstract

We consider the problem of inferring fold changes in gene expression from cDNA microarray data. Standard procedures focus on the ratio of measured fluorescent intensities at each spot on the microarray, but to do so is to ignore the fact that the variation of such ratios is not constant. Estimates of gene expression changes are derived within a simple hierarchical model that accounts for measurement error and fluctuations in absolute gene expression levels. Significant gene expression changes are identified by deriving the posterior odds of change within a similar model. The methods are tested via simulation and are applied to a panel of Escherichia coli microarrays.

摘要

我们考虑从cDNA微阵列数据推断基因表达倍数变化的问题。标准程序侧重于微阵列上每个点测量的荧光强度比值,但这样做忽略了一个事实,即这些比值的变化并非恒定。基因表达变化的估计值是在一个简单的层次模型中得出的,该模型考虑了测量误差和绝对基因表达水平的波动。通过在类似模型中推导变化的后验概率来识别显著的基因表达变化。这些方法通过模拟进行了测试,并应用于一组大肠杆菌微阵列。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验