Newton M A, Kendziorski C M, Richmond C S, Blattner F R, Tsui K W
Department of Statistics, University of Wisconsin, Madison, WI 53792, USA.
J Comput Biol. 2001;8(1):37-52. doi: 10.1089/106652701300099074.
We consider the problem of inferring fold changes in gene expression from cDNA microarray data. Standard procedures focus on the ratio of measured fluorescent intensities at each spot on the microarray, but to do so is to ignore the fact that the variation of such ratios is not constant. Estimates of gene expression changes are derived within a simple hierarchical model that accounts for measurement error and fluctuations in absolute gene expression levels. Significant gene expression changes are identified by deriving the posterior odds of change within a similar model. The methods are tested via simulation and are applied to a panel of Escherichia coli microarrays.
我们考虑从cDNA微阵列数据推断基因表达倍数变化的问题。标准程序侧重于微阵列上每个点测量的荧光强度比值,但这样做忽略了一个事实,即这些比值的变化并非恒定。基因表达变化的估计值是在一个简单的层次模型中得出的,该模型考虑了测量误差和绝对基因表达水平的波动。通过在类似模型中推导变化的后验概率来识别显著的基因表达变化。这些方法通过模拟进行了测试,并应用于一组大肠杆菌微阵列。