Suppr超能文献

用于差异基因表达的灵活经验贝叶斯模型。

Flexible empirical Bayes models for differential gene expression.

作者信息

Lo Kenneth, Gottardo Raphael

机构信息

Department of Statistics, University of British Columbia, 333-6356 Agricultural Road, Vancouver, BC, Canada V6T 1Z2.

出版信息

Bioinformatics. 2007 Feb 1;23(3):328-35. doi: 10.1093/bioinformatics/btl612. Epub 2006 Nov 30.

Abstract

MOTIVATION

Inference about differential expression is a typical objective when analyzing gene expression data. Recently, Bayesian hierarchical models have become increasingly popular for this type of problem. The two most common hierarchical models are the hierarchical Gamma-Gamma (GG) and Lognormal-Normal (LNN) models. However, to facilitate inference, some unrealistic assumptions have been made. One such assumption is that of a common coefficient of variation across genes, which can adversely affect the resulting inference.

RESULTS

In this paper, we extend both the GG and LNN modeling frameworks to allow for gene-specific variances and propose EM based algorithms for parameter estimation. The proposed methodology is evaluated on three experimental datasets: one cDNA microarray experiment and two Affymetrix spike-in experiments. The two extended models significantly reduce the false positive rate while keeping a high sensitivity when compared to the originals. Finally, using a simulation study we show that the new frameworks are also more robust to model misspecification.

AVAILABILITY

The R code for implementing the proposed methodology can be downloaded at http://www.stat.ubc.ca/~c.lo/FEBarrays.

SUPPLEMENTARY INFORMATION

The supplementary material is available at http://www.stat.ubc.ca/~c.lo/FEBarrays/supp.pdf.

摘要

动机

在分析基因表达数据时,推断差异表达是一个典型目标。最近,贝叶斯分层模型在这类问题上越来越受欢迎。两种最常见的分层模型是分层伽马 - 伽马(GG)模型和对数正态 - 正态(LNN)模型。然而,为了便于推断,做出了一些不切实际的假设。其中一个假设是基因间具有共同的变异系数,这可能会对推断结果产生不利影响。

结果

在本文中,我们扩展了GG和LNN建模框架,以允许基因特异性方差,并提出基于期望最大化(EM)的参数估计算法。我们在三个实验数据集上评估了所提出的方法:一个cDNA微阵列实验和两个Affymetrix掺入实验。与原始模型相比,这两个扩展模型在保持高灵敏度的同时显著降低了假阳性率。最后,通过模拟研究我们表明新框架对模型误设也更具鲁棒性。

可用性

实现所提出方法的R代码可从http://www.stat.ubc.ca/~c.lo/FEBarrays下载。

补充信息

补充材料可在http://www.stat.ubc.ca/~c.lo/FEBarrays/supp.pdf获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验