Suppr超能文献

寻找网络基序的统计方法比较。

Comparison of statistical methods for finding network motifs.

作者信息

Albieri Vanna, Didelez Vanessa

出版信息

Stat Appl Genet Mol Biol. 2014 Aug;13(4):403-22. doi: 10.1515/sagmb-2013-0017.

Abstract

There has been much recent interest in systems biology for investigating the structure of gene regulatory systems. Such networks are often formed of specific patterns, or network motifs, that are interesting from a biological point of view. Our aim in the present paper is to compare statistical methods specifically with regard to the question of how well they can detect such motifs. One popular approach is by network analysis with Gaussian graphical models (GGMs), which are statistical models associated with undirected graphs, where vertices of the graph represent genes and edges indicate regulatory interactions. Gene expression microarray data allow us to observe the amount of mRNA simultaneously for a large number of genes p under different experimental conditions n, where p is usually much larger than n prohibiting the use of standard methods. We therefore compare the performance of a number of procedures that have been specifically designed to address this large p-small n issue: G-Lasso estimation, Neighbourhood selection, Shrinkage estimation using empirical Bayes for model selection, and PC-algorithm. We found that all approaches performed poorly on the benchmark E. coli network. Hence we systematically studied their ability to detect specific network motifs, pairs, hubs and cascades, in extensive simulations. We conclude that all methods have difficulty detecting hubs, but the PC-algorithm is most promising.

摘要

最近,系统生物学在研究基因调控系统结构方面备受关注。这类网络通常由特定模式或网络模体构成,从生物学角度来看,这些模式或模体很有意思。本文的目的是特别针对统计方法在检测此类模体的能力方面进行比较。一种常用的方法是通过高斯图形模型(GGMs)进行网络分析,高斯图形模型是与无向图相关联的统计模型,图中的顶点代表基因,边表示调控相互作用。基因表达微阵列数据使我们能够在不同实验条件下同时观察大量基因(p个)的mRNA量,其中实验条件有n个,通常p远大于n,这使得标准方法无法使用。因此,我们比较了一些专门为解决这个大p小n问题而设计的方法的性能:G-Lasso估计、邻域选择、使用经验贝叶斯进行模型选择的收缩估计以及PC算法。我们发现,所有方法在基准大肠杆菌网络上的表现都很差。因此,我们在广泛的模拟中系统地研究了它们检测特定网络模体、配对、枢纽和级联的能力。我们得出结论,所有方法在检测枢纽方面都存在困难,但PC算法最具前景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验