d'Hendecourt L, Dartois E
Institut d'Astrophysique Spatiale, CNRS, Université Paris XI, Orsay, France.
Spectrochim Acta A Mol Biomol Spectrosc. 2001 Mar 15;57(4):669-84. doi: 10.1016/s1386-1425(00)00436-4.
Matrix isolation techniques have been developed in the early sixties as a tool for studying the spectroscopic properties of out of equilibrium species (atoms, radicals, ions, reactive molecules), embedded in rare gas inert matrices at low temperatures. Cold interstellar grains surfaces are able to condense out gas phase molecules, routinely observed by radioastronomy. These grain 'mantles' can be considered as 'interstellar matrices'. However, these matrices are not clean and unreactive. They are made principally of dirty ices whose composition must be determined carefully to assess the importance of the solid state chemistry that takes place in the Interstellar Medium. Infrared spectroscopy, both in astronomy and in the laboratory, is the unique tool to determine the chemical composition of these ices. Astronomical spectra can directly be compared with laboratory ones obtained using classical matrix isolation techniques. Furthermore, dedicated experiments may be undertaken to further improve the understanding of the basic physico-chemical processes that take place in cosmic ices.
基质隔离技术是在六十年代初期发展起来的,作为一种研究低温下嵌入稀有气体惰性基质中的非平衡物种(原子、自由基、离子、反应性分子)光谱性质的工具。寒冷的星际尘埃表面能够凝聚气相分子,这是射电天文学经常观测到的现象。这些尘埃“覆盖层”可被视为“星际基质”。然而,这些基质并非纯净且无反应性的。它们主要由脏冰构成,其成分必须仔细确定,以便评估星际介质中发生的固态化学的重要性。天文学和实验室中的红外光谱学是确定这些冰化学成分的独特工具。天文光谱可以直接与使用经典基质隔离技术获得的实验室光谱进行比较。此外,可以进行专门的实验,以进一步加深对宇宙冰中发生的基本物理化学过程的理解。