Suppr超能文献

由非吞噬性NAD(P)H氧化酶产生的H(2)O(2)诱导的O(2)生成会导致氧化损伤。

H(2)O(2)-induced O(2) production by a non-phagocytic NAD(P)H oxidase causes oxidant injury.

作者信息

Li W G, Miller F J, Zhang H J, Spitz D R, Oberley L W, Weintraub N L

机构信息

Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, Iowa 52242, USA.

出版信息

J Biol Chem. 2001 Aug 3;276(31):29251-6. doi: 10.1074/jbc.M102124200. Epub 2001 May 17.

Abstract

Non-phagocytic NAD(P)H oxidases have been implicated as major sources of reactive oxygen species in blood vessels. These oxidases can be activated by cytokines, thereby generating O(2), which is subsequently converted to H(2)O(2) and other oxidant species. The oxidants, in turn, act as important second messengers in cell signaling cascades. We hypothesized that reactive oxygen species, themselves, can activate the non-phagocytic NAD(P)H oxidases in vascular cells to induce oxidant production and, consequently, cellular injury. The current report demonstrates that exogenous exposure of non-phagocytic cell types of vascular origin (smooth muscle cells and fibroblasts) to H(2)O(2) activates these cell types to produce O(2) via an NAD(P)H oxidase. The ensuing endogenous production of O(2) contributes significantly to vascular cell injury following exposure to H(2)O(2). These results suggest the existence of a feed-forward mechanism, whereby reactive oxygen species such as H(2)O(2) can activate NAD(P)H oxidases in non-phagocytic cells to produce additional oxidant species, thereby amplifying the vascular injury process. Moreover, these findings implicate the non-phagocytic NAD(P)H oxidase as a novel therapeutic target for the amelioration of the biological effects of chronic oxidant stress.

摘要

非吞噬性NAD(P)H氧化酶被认为是血管中活性氧的主要来源。这些氧化酶可被细胞因子激活,从而产生O₂,随后O₂被转化为H₂O₂和其他氧化剂。反过来,这些氧化剂在细胞信号级联反应中作为重要的第二信使。我们推测活性氧本身可激活血管细胞中的非吞噬性NAD(P)H氧化酶,以诱导氧化剂生成,进而导致细胞损伤。本报告表明,将血管来源的非吞噬细胞类型(平滑肌细胞和成纤维细胞)外源性暴露于H₂O₂可激活这些细胞类型,使其通过NAD(P)H氧化酶产生O₂。随后内源性产生的O₂在暴露于H₂O₂后对血管细胞损伤有显著贡献。这些结果提示存在一种前馈机制,即诸如H₂O₂之类的活性氧可激活非吞噬细胞中的NAD(P)H氧化酶,以产生更多的氧化剂,从而放大血管损伤过程。此外,这些发现表明非吞噬性NAD(P)H氧化酶是减轻慢性氧化应激生物学效应的新型治疗靶点。

相似文献

引用本文的文献

7
From Flies to Men: ROS and the NADPH Oxidase in Phagocytes.从苍蝇到人类:吞噬细胞中的活性氧和NADPH氧化酶
Front Cell Dev Biol. 2021 Mar 26;9:628991. doi: 10.3389/fcell.2021.628991. eCollection 2021.
10
Oxidative Stress and Microvessel Barrier Dysfunction.氧化应激与微血管屏障功能障碍。
Front Physiol. 2020 May 27;11:472. doi: 10.3389/fphys.2020.00472. eCollection 2020.

本文引用的文献

1
Identification of renox, an NAD(P)H oxidase in kidney.肾脏中NAD(P)H氧化酶Renox的鉴定。
Proc Natl Acad Sci U S A. 2000 Jul 5;97(14):8010-4. doi: 10.1073/pnas.130135897.
3
Cloning of two human thyroid cDNAs encoding new members of the NADPH oxidase family.
J Biol Chem. 2000 Jul 28;275(30):23227-33. doi: 10.1074/jbc.M000916200.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验