Suppr超能文献

CD38 基因敲除小鼠冠状动脉心肌细胞中 NAD(P)H 氧化酶依赖性细胞内和细胞外 O2•- 的产生。

NAD(P)H oxidase-dependent intracellular and extracellular O2•- production in coronary arterial myocytes from CD38 knockout mice.

机构信息

Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298, USA.

出版信息

Free Radic Biol Med. 2012 Jan 15;52(2):357-65. doi: 10.1016/j.freeradbiomed.2011.10.485. Epub 2011 Nov 3.

Abstract

Activation of NAD(P)H oxidase has been reported to produce superoxide (O(2)(•-)) extracellularly as an autocrine/paracrine regulator or intracellularly as a signaling messenger in a variety of mammalian cells. However, it remains unknown how the activity of NAD(P)H oxidase is regulated in arterial myocytes. Recently, CD38-associated ADP-ribosylcyclase has been reported to use an NAD(P)H oxidase product, NAD(+) or NADP(+), to produce cyclic ADP-ribose (cADPR) or nicotinic acid adenine dinucleotide phosphate, which mediates intracellular Ca(2+) signaling. This study was designed to test a hypothesis that the CD38/cADPR pathway as a downstream event exerts feedback regulatory action on the NAD(P)H oxidase activity in production of extra- or intracellular O(2)(•-) in mouse coronary arterial myocytes (CAMs). By fluorescence microscopic imaging, we simultaneously monitored extra- and intracellular O(2)(•-) production in wild-type (CD38(+/+)) and CD38 knockout (CD38(-/-)) CAMs in response to oxotremorine (OXO), a muscarinic type 1 receptor agonist. It was found that CD38 deficiency prevented OXO-induced intracellular but not extracellular O(2)(•-) production in CAMs. Consistently, the OXO-induced intracellular O(2)(•-) production was markedly inhibited by CD38 shRNA or the CD38 inhibitor nicotinamide in CD38(+/+) CAMs. Further, Nox4 siRNA inhibited OXO-induced intracellular but not extracellular O(2)(•-) production, whereas Nox1 siRNA attenuated both intracellular and extracellular O(2)(•-) production in CD38(+/+) CAMs. Direct delivery of exogenous cADPR into CAMs markedly elevated intracellular Ca(2+) and O(2)(•-) production in CD38(-/-) CAMs. Functionally, CD38 deficiency or Nox1 siRNA and Nox4 siRNA prevented OXO-induced contraction in isolated perfused coronary arteries in CD38 WT mice. These results provide direct evidence that the CD38/cADPR pathway is an important controller of Nox4-mediated intracellular O(2)(•-) production and that CD38-dependent intracellular O(2)(•-) production is augmented in an autocrine manner by CD38-independent Nox1-derived extracellular O(2)(•-) production in CAMs.

摘要

NAD(P)H 氧化酶的激活已被报道在各种哺乳动物细胞中外分泌/旁分泌产生超氧阴离子(O2(•-))作为自分泌/旁分泌调节剂或细胞内作为信号信使。然而,NAD(P)H 氧化酶的活性如何在动脉肌细胞中被调节仍不清楚。最近,已报道 CD38 相关的 ADP-核糖基环化酶利用 NAD(P)H 氧化酶产物 NAD(+)或 NADP(+)产生环 ADP-核糖(cADPR)或烟酰胺腺嘌呤二核苷酸磷酸,介导细胞内 Ca(2+)信号转导。本研究旨在检验一个假设,即 CD38/cADPR 途径作为下游事件,对 NAD(P)H 氧化酶在产生细胞外或细胞内 O2(•-)的活性产生反馈调节作用在小鼠冠状动脉肌细胞(CAM)中。通过荧光显微镜成像,我们同时监测野生型(CD38(+/+))和 CD38 敲除(CD38(-/-))CAM 对氧托咪定(OXO)反应时的细胞外和细胞内 O2(•-)的产生,OXO 是一种毒蕈碱 1 型受体激动剂。结果发现,CD38 缺乏可防止 OXO 诱导的 CAM 细胞内但不细胞外 O2(•-)的产生。一致地,OXO 诱导的细胞内 O2(•-)的产生在 CD38(+/+)CAM 中被 CD38 shRNA 或 CD38 抑制剂烟酰胺明显抑制。此外,Nox4 siRNA 抑制 OXO 诱导的细胞内但不细胞外 O2(•-)的产生,而 Nox1 siRNA 减弱 CD38(+/+)CAM 中的细胞内和细胞外 O2(•-)的产生。外源性 cADPR 直接递送至 CAM 可显著升高 CD38(-/-)CAM 中的细胞内 Ca(2+)和 O2(•-)的产生。功能上,CD38 缺乏或 Nox1 siRNA 和 Nox4 siRNA 可防止 OXO 诱导的在 CD38 WT 小鼠中分离的灌注冠状动脉的收缩。这些结果提供了直接证据,表明 CD38/cADPR 途径是 Nox4 介导的细胞内 O2(•-)产生的重要控制器,并且 CD38 依赖性细胞内 O2(•-)的产生通过 CD38 独立的 Nox1 衍生的细胞外 O2(•-)的产生以自分泌方式增强在 CAM 中。

相似文献

1
NAD(P)H oxidase-dependent intracellular and extracellular O2•- production in coronary arterial myocytes from CD38 knockout mice.
Free Radic Biol Med. 2012 Jan 15;52(2):357-65. doi: 10.1016/j.freeradbiomed.2011.10.485. Epub 2011 Nov 3.
3
Contribution of NADPH oxidase to membrane CD38 internalization and activation in coronary arterial myocytes.
PLoS One. 2013 Aug 7;8(8):e71212. doi: 10.1371/journal.pone.0071212. Print 2013.
4
Formation and function of ceramide-enriched membrane platforms with CD38 during M1-receptor stimulation in bovine coronary arterial myocytes.
Am J Physiol Heart Circ Physiol. 2008 Oct;295(4):H1743-52. doi: 10.1152/ajpheart.00617.2008. Epub 2008 Aug 22.
5
Autocrine/paracrine pattern of superoxide production through NAD(P)H oxidase in coronary arterial myocytes.
Am J Physiol Heart Circ Physiol. 2007 Jan;292(1):H483-95. doi: 10.1152/ajpheart.00632.2006. Epub 2006 Sep 8.
6
Lysosome-dependent Ca(2+) release response to Fas activation in coronary arterial myocytes through NAADP: evidence from CD38 gene knockouts.
Am J Physiol Cell Physiol. 2010 May;298(5):C1209-16. doi: 10.1152/ajpcell.00533.2009. Epub 2010 Mar 3.
8
9
Contribution of Nrf2 to Atherogenic Phenotype Switching of Coronary Arterial Smooth Muscle Cells Lacking CD38 Gene.
Cell Physiol Biochem. 2015;37(2):432-44. doi: 10.1159/000430366. Epub 2015 Aug 28.
10
CD38 mediates angiotensin II-induced intracellular Ca(2+) release in rat pulmonary arterial smooth muscle cells.
Am J Respir Cell Mol Biol. 2015 Mar;52(3):332-41. doi: 10.1165/rcmb.2014-0141OC.

引用本文的文献

1
Lysosome Functions in Atherosclerosis: A Potential Therapeutic Target.
Cells. 2025 Jan 24;14(3):183. doi: 10.3390/cells14030183.
3
Lysosomal TRPML1 Channel: Implications in Cardiovascular and Kidney Diseases.
Adv Exp Med Biol. 2021;1349:275-301. doi: 10.1007/978-981-16-4254-8_13.
4
Lysosome Function in Cardiovascular Diseases.
Cell Physiol Biochem. 2021 May 22;55(3):277-300. doi: 10.33594/000000373.
5
Downregulation of Lysosomal Acid Ceramidase Mediates HMGB1-Induced Migration and Proliferation of Mouse Coronary Arterial Myocytes.
Front Cell Dev Biol. 2020 Mar 10;8:111. doi: 10.3389/fcell.2020.00111. eCollection 2020.
6
Contribution of cathepsin B-dependent Nlrp3 inflammasome activation to nicotine-induced endothelial barrier dysfunction.
Eur J Pharmacol. 2019 Dec 15;865:172795. doi: 10.1016/j.ejphar.2019.172795. Epub 2019 Nov 13.
8
Contribution of transcription factor EB to adipoRon-induced inhibition of arterial smooth muscle cell proliferation and migration.
Am J Physiol Cell Physiol. 2019 Nov 1;317(5):C1034-C1047. doi: 10.1152/ajpcell.00294.2019. Epub 2019 Sep 4.
9
Inhibitory effects of growth differentiation factor 11 on autophagy deficiency-induced dedifferentiation of arterial smooth muscle cells.
Am J Physiol Heart Circ Physiol. 2019 Feb 1;316(2):H345-H356. doi: 10.1152/ajpheart.00342.2018. Epub 2018 Nov 21.

本文引用的文献

1
SNARE-mediated rapid lysosome fusion in membrane raft clustering and dysfunction of bovine coronary arterial endothelium.
Am J Physiol Heart Circ Physiol. 2011 Nov;301(5):H2028-37. doi: 10.1152/ajpheart.00581.2011. Epub 2011 Sep 16.
2
NADH/NADPH Oxidase and Vascular Function.
Trends Cardiovasc Med. 1997 Nov;7(8):301-7. doi: 10.1016/S1050-1738(97)00088-1.
4
Formation and function of ceramide-enriched membrane platforms with CD38 during M1-receptor stimulation in bovine coronary arterial myocytes.
Am J Physiol Heart Circ Physiol. 2008 Oct;295(4):H1743-52. doi: 10.1152/ajpheart.00617.2008. Epub 2008 Aug 22.
5
Salt-sensitive hypertension induced by decoy of transcription factor hypoxia-inducible factor-1alpha in the renal medulla.
Circ Res. 2008 May 9;102(9):1101-8. doi: 10.1161/CIRCRESAHA.107.169201. Epub 2008 Mar 20.
7
Critical role of lipid raft redox signaling platforms in endostatin-induced coronary endothelial dysfunction.
Arterioscler Thromb Vasc Biol. 2008 Mar;28(3):485-90. doi: 10.1161/ATVBAHA.107.159772. Epub 2007 Dec 27.
9
Autocrine/paracrine pattern of superoxide production through NAD(P)H oxidase in coronary arterial myocytes.
Am J Physiol Heart Circ Physiol. 2007 Jan;292(1):H483-95. doi: 10.1152/ajpheart.00632.2006. Epub 2006 Sep 8.
10
Production of NAADP and its role in Ca2+ mobilization associated with lysosomes in coronary arterial myocytes.
Am J Physiol Heart Circ Physiol. 2006 Jul;291(1):H274-82. doi: 10.1152/ajpheart.01064.2005. Epub 2006 Feb 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验