Boukerroui D, Basset O, Baskurt A, Gimenez G
CREATIS, CNRS Research Unit (UMR 5515), Villeurbanne, France.
IEEE Trans Ultrason Ferroelectr Freq Control. 2001 Jan;48(1):64-77. doi: 10.1109/58.895909.
An algorithm devoted to the segmentation of 3-D ultrasonic data is proposed. The algorithm involves 3-D adaptive clustering based on multiparametric information: the gray-scale intensity of the echographic data, 3-D texture features calculated from the envelope data, and 3-D tissue characterization information calculated from the local frequency spectra of the radio-frequency signals. The segmentation problem is formulated as a Maximum A posterior (MAP) estimation problem. A multi-resolution implementation of the algorithm is proposed. The approach is tested on simulated data and on in vivo echocardiographic 3-D data. The results presented in the paper illustrate the robustness and the accuracy of the proposed approach for the segmentation of ultrasonic data.
提出了一种用于三维超声数据分割的算法。该算法涉及基于多参数信息的三维自适应聚类:超声数据的灰度强度、从包络数据计算得到的三维纹理特征以及从射频信号的局部频谱计算得到的三维组织特征信息。分割问题被表述为最大后验(MAP)估计问题。提出了该算法的多分辨率实现方式。该方法在模拟数据和体内超声心动图三维数据上进行了测试。本文给出的结果说明了所提方法在超声数据分割方面的鲁棒性和准确性。