Boukerroui D, Basset O, Guérin N, Baskurt A
CREATIS-UMR INSA-502, 69621 Villeurbanne cedex, France.
Eur J Ultrasound. 1998 Nov;8(2):135-44. doi: 10.1016/s0929-8266(98)00062-7.
A specific algorithm is presented for the automatic extraction of breast tumors in ultrasonic imaging.
The algorithm involves two-dimensional adaptive K-means clustering of the gray scale and textural feature images. The segmentation problem is formulated as a maximum a posteriori (MAP) estimation problem. The MAP estimation is achieved using Besag's iterated conditional modes algorithm for the minimization of an energy function. This function has three components: the first constrains the region to be close to the data; the second imposes spatial continuity; and the third takes into consideration the texture of the various regions. A multiresolution implementation of the algorithm is performed using a waveless basis.
Experiments were carried out on synthetic images and on in vivo breast ultrasound images. Various parameters involved in the algorithm are discussed to evaluate the robustness and accuracy of the segmentation method.
Including textural features in the segmentation of ultrasonic data improves the robustness of the algorithm and makes the segmentation result less parameter dependent.
提出一种用于在超声成像中自动提取乳腺肿瘤的特定算法。
该算法涉及灰度和纹理特征图像的二维自适应K均值聚类。分割问题被表述为最大后验(MAP)估计问题。使用贝萨格的迭代条件模式算法来实现MAP估计,以最小化一个能量函数。该函数有三个组成部分:第一部分约束区域接近数据;第二部分施加空间连续性;第三部分考虑各个区域的纹理。使用无波基对算法进行多分辨率实现。
在合成图像和活体乳腺超声图像上进行了实验。讨论了算法中涉及的各种参数,以评估分割方法的稳健性和准确性。
在超声数据分割中纳入纹理特征可提高算法的稳健性,并使分割结果对参数的依赖性降低。