Suppr超能文献

基于多分辨率纹理的乳腺病变分割自适应聚类算法

Multiresolution texture based adaptive clustering algorithm for breast lesion segmentation.

作者信息

Boukerroui D, Basset O, Guérin N, Baskurt A

机构信息

CREATIS-UMR INSA-502, 69621 Villeurbanne cedex, France.

出版信息

Eur J Ultrasound. 1998 Nov;8(2):135-44. doi: 10.1016/s0929-8266(98)00062-7.

Abstract

OBJECTIVE

A specific algorithm is presented for the automatic extraction of breast tumors in ultrasonic imaging.

METHOD

The algorithm involves two-dimensional adaptive K-means clustering of the gray scale and textural feature images. The segmentation problem is formulated as a maximum a posteriori (MAP) estimation problem. The MAP estimation is achieved using Besag's iterated conditional modes algorithm for the minimization of an energy function. This function has three components: the first constrains the region to be close to the data; the second imposes spatial continuity; and the third takes into consideration the texture of the various regions. A multiresolution implementation of the algorithm is performed using a waveless basis.

RESULTS

Experiments were carried out on synthetic images and on in vivo breast ultrasound images. Various parameters involved in the algorithm are discussed to evaluate the robustness and accuracy of the segmentation method.

CONCLUSION

Including textural features in the segmentation of ultrasonic data improves the robustness of the algorithm and makes the segmentation result less parameter dependent.

摘要

目的

提出一种用于在超声成像中自动提取乳腺肿瘤的特定算法。

方法

该算法涉及灰度和纹理特征图像的二维自适应K均值聚类。分割问题被表述为最大后验(MAP)估计问题。使用贝萨格的迭代条件模式算法来实现MAP估计,以最小化一个能量函数。该函数有三个组成部分:第一部分约束区域接近数据;第二部分施加空间连续性;第三部分考虑各个区域的纹理。使用无波基对算法进行多分辨率实现。

结果

在合成图像和活体乳腺超声图像上进行了实验。讨论了算法中涉及的各种参数,以评估分割方法的稳健性和准确性。

结论

在超声数据分割中纳入纹理特征可提高算法的稳健性,并使分割结果对参数的依赖性降低。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验