Xue L, Wang H F, Wang Q, Szklarz G D, Domanski T L, Halpert J R, Correia M A
Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94143, USA.
Chem Res Toxicol. 2001 May;14(5):483-91. doi: 10.1021/tx000218z.
The major human liver drug-metabolizing cytochrome P450 enzymes P450 3A4 and P450 3A5 share >85% amino acid sequence identity yet exhibit different regioselectivity toward aflatoxin B(1) (AFB(1)) biotransformation [Gillam et al. (1995) Arch. Biochem. Biophys. 317, 74-384]. P450 3A4 prefers AFB1 3alpha-hydroxylation, which detoxifies and subsequently eliminates the hepatotoxin, over AFB1 exo-8,9-oxidation. P450 3A5, on the other hand, is a relatively sluggish 3alpha-hydroxylase and converts AFB(1) predominantly to the genotoxic exo-8,9-epoxide. Using a combination of approaches (sequence alignment, homology modeling and site-directed mutagenesis), we have previously identified several divergent residues in four of the six putative substrate recognition sites (SRSs) of P450 3A4, which when replaced individually with the corresponding amino acid of P450 3A5, resulted in a significant switch of the characteristic P450 3A4 AFB(1) regioselectivity toward that of P450 3A5 [Wang et al. (1998) Biochemistry 37, 12536-12545]. In particular, residues N206 and L210 in SRS-2 were found to be critical for AFB(1) detoxification via 3alpha-hydroxylation, and the corresponding mutants N206S and L210F most closely mimicked P450 3A5, not only in its regioselectivity of AFB(1) metabolism but also in its overall functional capacity. We have now further explored the plausible reasons for such relative inactivity of the SRS-2 mutants by examining N206S and additional mutants (L210A, L211F, L211A, and N206E) and found that the dramatically lowered activities of the N206S mutant are accompanied by a loss of cooperativity of AFB(1) oxidation. Molecular dynamics analyses with an existing P450 3A4 homology model [Szklarz and Halpert (1997) J. Comput. Aided Mol. Des. 11, 265] suggested that N206 (helix F) interacts with E244 (helix G), creating a salt bridge that stabilizes the protein structure and/or defines the active site cavity. To examine this possibility, several E244 mutants (E244A, V, N, S) were tested, of which E244S was the most notable for its relatively greater impairment of P450 3A4-dependent AFB(1) 3alpha-hydroxylation. However, the results with these E244 mutants failed to validate the N206-E244 interaction predicted from these molecular dynamics analyses. Collectively, our findings to date have led us to reconsider our original interpretations and to reexamine them in the light of AFB(1) molecular modeling analyses with a newly refined P450 3A4 homology model. These analyses predicted that F304 in SRS-4 (I-helix) plays a pivotal role in AFB(1) binding at the active site in either orientation leading to 3alpha- or exo-8,9-oxidation. Consistent with this prediction, conversion of F304 to Ala abolished P450 3A4-dependent AFB(1) 3alpha-hydroxylation and exo-8,9-oxidation.
主要的人体肝脏药物代谢细胞色素P450酶P450 3A4和P450 3A5的氨基酸序列同一性超过85%,但对黄曲霉毒素B1(AFB1)生物转化表现出不同的区域选择性[吉勒姆等人(1995年)《生物化学与生物物理学报》317卷,74 - 384页]。与AFB1外环8,9 - 氧化相比,P450 3A4更倾向于AFB1的3α - 羟基化,这种反应可使肝毒素解毒并随后将其清除。另一方面,P450 3A5是一种相对低效的3α - 羟化酶,它将AFB1主要转化为具有基因毒性的外环8,9 - 环氧化物。通过多种方法(序列比对、同源建模和定点诱变)相结合,我们之前已在P450 3A4六个假定底物识别位点(SRSs)中的四个位点鉴定出几个不同的残基,当这些残基分别被P450 3A5的相应氨基酸取代时,导致P450 3A4对AFB1的特征性区域选择性显著转变为P450 3A5的区域选择性[王等人(1998年)《生物化学》37卷,12536 - 12545页]。特别地,发现SRS - 2中的残基N206和L210对于通过3α - 羟基化进行AFB1解毒至关重要,相应的突变体N206S和L210F不仅在AFB1代谢的区域选择性上,而且在其整体功能能力上最接近地模拟了P450 3A5。我们现在通过研究N206S和其他突变体(L210A、L211F、L211A和N206E)进一步探究了SRS - 2突变体这种相对无活性的可能原因,发现N206S突变体活性的显著降低伴随着AFB1氧化协同性的丧失。利用现有的P450 3A4同源模型进行的分子动力学分析[斯克拉尔兹和哈尔珀特(1997年)《计算机辅助分子设计杂志》11卷,265页]表明,N206(F螺旋)与E244(G螺旋)相互作用,形成一个盐桥,该盐桥稳定蛋白质结构和/或界定活性位点腔。为检验这种可能性,测试了几个E244突变体(E244A、V、N、S),其中E244S因其对P450 3A4依赖的AFB1 3α - 羟基化的相对更大损害而最为显著。然而,这些E244突变体的结果未能证实从这些分子动力学分析预测的N206 - E244相互作用。总体而言,我们目前的研究结果使我们重新考虑我们最初的解释,并根据使用新优化的P450 3A4同源模型进行的AFB1分子建模分析对其进行重新审视。这些分析预测,SRS - 4(I螺旋)中的F304在AFB1以任何一种导致3α - 或外环8,9 - 氧化的方向结合活性位点时起关键作用。与该预测一致,将F304转化为丙氨酸消除了P450 3A4依赖的AFB1 3α - 羟基化和外环8,9 - 氧化。