Wang H, Dick R, Yin H, Licad-Coles E, Kroetz D L, Szklarz G, Harlow G, Halpert J R, Correia M A
Department of Cellular and Molecular Pharmacology, Liver Center, University of California, San Francisco 94143, USA.
Biochemistry. 1998 Sep 8;37(36):12536-45. doi: 10.1021/bi980895g.
Cytochromes P450 3A4 and 3A5, the dominant drug-metabolizing enzymes in the human liver, share >85% primary amino acid sequence identity yet exhibit different regioselectivity toward aflatoxin B1 (AFB1) biotransformation [Gillam et al., (1995) Arch. Biochem. Biophys. 317, 374-384]. P450 3A4 apparently prefers AFB1 3alpha-hydroxylation, which results in detoxification and subsequent elimination of the hepatotoxin, over AFB1 exo-8,9-oxidation. In contrast, P450 3A5 is incapable of appreciable AFB1 3alpha-hydroxylation and converts it predominantly to the exo-8,9-oxide which is genotoxic. To elucidate the structural features that govern the regioselectivity of the human liver 3A enzymes in AFB1 metabolism and bioactivation, a combination of approaches including sequence alignment, homology modeling, and site-directed mutagenesis was employed. Specifically, the switch in AFB1 regioselectivity was examined after individual substitution of the divergent amino acids in each of the six putative substrate recognition sites (SRSs) of P450 3A4 with the corresponding amino acid of P450 3A5. Of the P450 3A4 mutants examined, P107S, F108L, N206S, L210F, V376T, S478D, and L479T mutations resulted in a significant switch of P450 3A4 regioselectivity toward that of P450 3A5. The results confirmed the importance of some of these residues in substrate contact in the active site, with residue N206 (SRS-2) being critical for AFB1 detoxification via 3alpha-hydroxylation. Moreover, the P450 3A4 mutant N206S most closely mimicked P450 3A5, not only in its regioselectivity of AFB1 metabolism but also in its overall functional capacity. Furthermore, the other SRS-2 mutant, L210F, also resembled P450 3A5 in its overall AFB1 metabolism and regioselectivity. These findings reveal that a single P450 3A5 SRS domain (SRS-2) is capable of conferring the P450 3A5 phenotype on P450 3A4. In addition, some of these P450 3A4 mutations that affected AFB1 regioselectivity had little influence on testosterone 6beta-hydroxylation, thereby confirming that each substrate-P450 active site fit is indeed unique.
细胞色素P450 3A4和3A5是人类肝脏中主要的药物代谢酶,它们的一级氨基酸序列同一性超过85%,但对黄曲霉毒素B1(AFB1)生物转化表现出不同的区域选择性[吉勒姆等人,(1995年)《生物化学与生物物理学报》317卷,374 - 384页]。P450 3A4显然更倾向于AFB1的3α-羟基化,这会导致肝毒素解毒并随后消除,而不是AFB1的外-8,9-氧化。相比之下,P450 3A5几乎没有AFB1 3α-羟基化的能力,主要将其转化为具有基因毒性的外-8,9-环氧化物。为了阐明在AFB1代谢和生物活化过程中控制人类肝脏3A酶区域选择性的结构特征,采用了包括序列比对、同源建模和定点诱变在内的多种方法。具体而言,在将P450 3A4的六个假定底物识别位点(SRSs)中的每个位点的不同氨基酸逐个替换为P450 3A5的相应氨基酸后,检查了AFB1区域选择性的转变。在所检测的P450 3A4突变体中,P107S、F108L、N206S、L210F、V376T、S478D和L479T突变导致P450 3A4的区域选择性显著转变为P450 3A5的区域选择性。结果证实了其中一些残基在活性位点与底物接触中的重要性,残基N206(SRS - 2)对于通过3α-羟基化进行AFB1解毒至关重要。此外,P450 3A4突变体N206S不仅在AFB1代谢的区域选择性上,而且在其整体功能能力上最接近P450 3A5。此外,另一个SRS - 2突变体L210F在其整体AFB1代谢和区域选择性上也类似于P450 3A5。这些发现表明,单个P450 3A5 SRS结构域(SRS - 2)能够赋予P450 3A4以P450 3A5的表型。此外,一些影响AFB1区域选择性的P450 3A4突变对睾酮6β-羟基化影响很小,从而证实每个底物 - P450活性位点的契合确实是独特的。