Suppr超能文献

Novel pristinamycin-responsive expression systems for plant cells.

作者信息

Frey A D, Rimann M, Bailey J E, Kallio P T, Thompson C J, Fussenegger M

机构信息

Institute of Biotechnology, Swiss Federal Institute of Technology, ETH Zurich, CH-8093 Zurich, Switzerland.

出版信息

Biotechnol Bioeng. 2001 Jul 20;74(2):154-63. doi: 10.1002/bit.1105.

Abstract

Novel gene regulation systems were designed for plant cells responsive to the streptogramin antibiotic pristinamycin. The pristinamycin-repressible plant gene regulation concept (PIPpOFF) is based on a transcriptional activator (PIT) which consists of the Pip protein, the repressor of the pristinamycin resistance operon of Streptomyces coelicolor, fused to the VP16 transactivation domain of the Herpes simplex virus. PIT mediates pristinamycin-repressible activation of a synthetic plant promoter (P(pPIR)) in tobacco cells consisting of a nine Pip-binding site-containing artificial operator (PIR3) placed upstream of a TATA-box derived from the cauliflower mosaic virus 35S promoter (P(CaMV35S)). Pristinamycin interferes with induction by negatively regulating the DNA-binding capacity of the Pip moiety of PIT. A second, streptogramin-inducible plant gene regulation system (PIPpON) was constructed by combining Pip expression with a plant-specific pristinamycin-inducible promoter (P(pPIRON)). P(pPIRON) consists of a PIR3 module cloned downstream of the strong constitutive plant promoter P(CaMV35S). As in the native Streptomyces configuration, Pip binds to its cognate sequence within P(pPIRON) in the absence of regulating antibiotic and silences the chimeric plant promoter. Upon addition of pristinamycin, Pip is released from the PIR3 operator and full P(CaMV35S)-driven expression of desired plant genes is induced. The PIPpOFF and PIPpON systems performed well in Nicotiana tabacum suspension cultures and promise to provide an attractive extension of existing plant gene regulation technology for basic plant research or biopharmaceutical manufacturing using plant tissue culture.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验