Suppr超能文献

一种具有区间约束的各向异性全变分图像去噪的序贯解法。

A sequential solution for anisotropic total variation image denoising with interval constraints.

作者信息

Xu Jingyan, Noo Frédéric

机构信息

Department of Radiology, Johns Hopkins University, Baltimore, MD, United States of America.

出版信息

Phys Med Biol. 2017 Sep 1;62(18):N428-N435. doi: 10.1088/1361-6560/aa837d.

Abstract

We show that two problems involving the anisotropic total variation (TV) and interval constraints on the unknown variables admit, under some conditions, a simple sequential solution. Problem 1 is a constrained TV penalized image denoising problem; problem 2 is a constrained fused lasso signal approximator. The sequential solution entails finding first the solution to the unconstrained problem, and then applying a thresholding to satisfy the constraints. If the interval constraints are uniform, this sequential solution solves problem 1. If the interval constraints furthermore contain zero, the sequential solution solves problem 2. Here uniform interval constraints refer to all unknowns being constrained to the same interval. A typical example of application is image denoising in x-ray CT, where the image intensities are non-negative as they physically represent linear attenuation coefficient in the patient body. Our results are simple yet seem unknown; we establish them using the Karush-Kuhn-Tucker conditions for constrained convex optimization.

摘要

我们表明,在某些条件下,两个涉及各向异性总变分(TV)和未知变量区间约束的问题允许采用一种简单的顺序求解方法。问题1是一个受约束的TV惩罚图像去噪问题;问题2是一个受约束的融合套索信号逼近器。顺序求解方法需要首先找到无约束问题的解,然后应用阈值化来满足约束条件。如果区间约束是均匀的,这种顺序求解方法可以解决问题1。如果区间约束还包含零,顺序求解方法可以解决问题2。这里的均匀区间约束是指所有未知量都被约束在同一个区间内。一个典型的应用例子是X射线CT中的图像去噪,其中图像强度是非负的,因为它们在物理上代表了患者体内的线性衰减系数。我们的结果很简单,但似乎尚不为人所知;我们使用约束凸优化的Karush-Kuhn-Tucker条件来建立这些结果。

相似文献

1
A sequential solution for anisotropic total variation image denoising with interval constraints.
Phys Med Biol. 2017 Sep 1;62(18):N428-N435. doi: 10.1088/1361-6560/aa837d.
2
Nonparametric optimization of constrained total variation for tomography reconstruction.
Comput Biol Med. 2013 Dec;43(12):2163-76. doi: 10.1016/j.compbiomed.2013.09.014. Epub 2013 Sep 25.
3
Fast alternating projection methods for constrained tomographic reconstruction.
PLoS One. 2017 Mar 2;12(3):e0172938. doi: 10.1371/journal.pone.0172938. eCollection 2017.
4
First-order convex feasibility algorithms for x-ray CT.
Med Phys. 2013 Mar;40(3):031115. doi: 10.1118/1.4790698.
5
Superiorized algorithm for reconstruction of CT images from sparse-view and limited-angle polyenergetic data.
Phys Med Biol. 2017 Aug 1;62(16):6762-6783. doi: 10.1088/1361-6560/aa7c2d.
7
Non-local total variation based low-dose Computed Tomography denoising.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:1083-6. doi: 10.1109/EMBC.2014.6943782.
8
A new development of non-local image denoising using fixed-point iteration for non-convex ℓp sparse optimization.
PLoS One. 2018 Dec 12;13(12):e0208503. doi: 10.1371/journal.pone.0208503. eCollection 2018.
9
Reconstruction of sparse-view X-ray computed tomography using adaptive iterative algorithms.
Comput Biol Med. 2015 Jan;56:97-106. doi: 10.1016/j.compbiomed.2014.11.001. Epub 2014 Nov 8.
10
Image denoising via a non-local patch graph total variation.
PLoS One. 2019 Dec 12;14(12):e0226067. doi: 10.1371/journal.pone.0226067. eCollection 2019.

引用本文的文献

1
CT image denoising methods for image quality improvement and radiation dose reduction.
J Appl Clin Med Phys. 2024 Feb;25(2):e14270. doi: 10.1002/acm2.14270. Epub 2024 Jan 19.
2
Parameter-Transferred Wasserstein Generative Adversarial Network (PT-WGAN) for Low-Dose PET Image Denoising.
IEEE Trans Radiat Plasma Med Sci. 2021 Mar;5(2):213-223. doi: 10.1109/trpms.2020.3025071. Epub 2020 Sep 21.

本文引用的文献

1
Edge Preserving and Noise Reducing Reconstruction for Magnetic Particle Imaging.
IEEE Trans Med Imaging. 2017 Jan;36(1):74-85. doi: 10.1109/TMI.2016.2593954. Epub 2016 Jul 22.
2
Non-Lipschitz lp-regularization and box constrained model for image restoration.
IEEE Trans Image Process. 2012 Dec;21(12):4709-21. doi: 10.1109/TIP.2012.2214051. Epub 2012 Sep 19.
3
Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems.
IEEE Trans Image Process. 2009 Nov;18(11):2419-34. doi: 10.1109/TIP.2009.2028250. Epub 2009 Jul 24.
4
Evaluation of iterative sparse object reconstruction from few projections for 3-D rotational coronary angiography.
IEEE Trans Med Imaging. 2008 Nov;27(11):1548-55. doi: 10.1109/TMI.2008.2006514.
5
A primal-dual active-set method for non-negativity constrained total variation deblurring problems.
IEEE Trans Image Process. 2007 Nov;16(11):2766-77. doi: 10.1109/tip.2007.908079.
7
Total variation norm for three-dimensional iterative reconstruction in limited view angle tomography.
Phys Med Biol. 2001 Mar;46(3):853-66. doi: 10.1088/0031-9155/46/3/318.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验