Xu Jingyan, Noo Frédéric
Department of Radiology, Johns Hopkins University, Baltimore, MD, United States of America.
Phys Med Biol. 2017 Sep 1;62(18):N428-N435. doi: 10.1088/1361-6560/aa837d.
We show that two problems involving the anisotropic total variation (TV) and interval constraints on the unknown variables admit, under some conditions, a simple sequential solution. Problem 1 is a constrained TV penalized image denoising problem; problem 2 is a constrained fused lasso signal approximator. The sequential solution entails finding first the solution to the unconstrained problem, and then applying a thresholding to satisfy the constraints. If the interval constraints are uniform, this sequential solution solves problem 1. If the interval constraints furthermore contain zero, the sequential solution solves problem 2. Here uniform interval constraints refer to all unknowns being constrained to the same interval. A typical example of application is image denoising in x-ray CT, where the image intensities are non-negative as they physically represent linear attenuation coefficient in the patient body. Our results are simple yet seem unknown; we establish them using the Karush-Kuhn-Tucker conditions for constrained convex optimization.
我们表明,在某些条件下,两个涉及各向异性总变分(TV)和未知变量区间约束的问题允许采用一种简单的顺序求解方法。问题1是一个受约束的TV惩罚图像去噪问题;问题2是一个受约束的融合套索信号逼近器。顺序求解方法需要首先找到无约束问题的解,然后应用阈值化来满足约束条件。如果区间约束是均匀的,这种顺序求解方法可以解决问题1。如果区间约束还包含零,顺序求解方法可以解决问题2。这里的均匀区间约束是指所有未知量都被约束在同一个区间内。一个典型的应用例子是X射线CT中的图像去噪,其中图像强度是非负的,因为它们在物理上代表了患者体内的线性衰减系数。我们的结果很简单,但似乎尚不为人所知;我们使用约束凸优化的Karush-Kuhn-Tucker条件来建立这些结果。