Suppr超能文献

甲苯培养的不透明红球菌PWD4细胞将D-柠檬烯生物转化为(+)反式香芹醇。

Biotransformation of D-limonene to (+) trans-carveol by toluene-grown Rhodococcus opacus PWD4 cells.

作者信息

Duetz W A, Fjällman A H, Ren S, Jourdat C, Witholt B

机构信息

Institute of Biotechnology, ETH Hönggerberg, HPT, CH 8093, Zürich, Switzerland.

出版信息

Appl Environ Microbiol. 2001 Jun;67(6):2829-32. doi: 10.1128/AEM.67.6.2829-2832.2001.

Abstract

The toluene-degrading strain Rhodococcus opacus PWD4 was found to hydroxylate D-limonene exclusively in the 6-position, yielding enantiomerically pure (+) trans-carveol and traces of (+) carvone. This biotransformation was studied using cells cultivated in chemostat culture with toluene as a carbon and energy source. The maximal specific activity of (+) trans-carveol formation was 14.7 U (g of cells [dry weight])(-1), and the final yield was 94 to 97%. Toluene was found to be a strong competitive inhibitor of the D-limonene conversion. Glucose-grown cells did not form any trans-carveol from D-limonene. These results suggest that one of the enzymes involved in toluene degradation is responsible for this allylic monohydroxylation. Another toluene degrader (Rhodococcus globerulus PWD8) had a lower specific activity but was found to oxidize most of the formed trans-carveol to (+) carvone, allowing for the biocatalytic production of this flavor compound.

摘要

研究发现,甲苯降解菌株食油红球菌PWD4仅在D-柠檬烯的6位进行羟基化反应,生成对映体纯的(+)反式香芹醇和痕量的(+)香芹酮。使用以甲苯作为碳源和能源在恒化器培养中培养的细胞对这种生物转化进行了研究。(+)反式香芹醇形成的最大比活性为14.7 U(每克细胞[干重])⁻¹,最终产率为94%至97%。发现甲苯是D-柠檬烯转化的强竞争性抑制剂。以葡萄糖培养的细胞不能从D-柠檬烯形成任何反式香芹醇。这些结果表明,参与甲苯降解的一种酶负责这种烯丙基单羟基化反应。另一种甲苯降解菌(球形红球菌PWD8)的比活性较低,但发现它能将大部分生成的反式香芹醇氧化为(+)香芹酮,从而实现这种风味化合物的生物催化生产。

相似文献

2
Inhibitory effects of substrate and product on the carvone biotransformation activity of Rhodococcus erythropolis.
Biotechnol Lett. 2008 Jul;30(7):1245-50. doi: 10.1007/s10529-008-9686-5. Epub 2008 Mar 8.
3

引用本文的文献

4
Enzymatic synthesis of enantiopure alcohols: current state and perspectives.对映体纯醇的酶促合成:现状与展望
RSC Adv. 2019 Jan 15;9(4):2102-2115. doi: 10.1039/c8ra09004a. eCollection 2019 Jan 14.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验