文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

在缺少β3b辅助亚基的NH(2)端和COOH端的情况下,该亚基赋予大电导钙激活钾通道的门控特性。

Gating properties conferred on BK channels by the beta3b auxiliary subunit in the absence of its NH(2)- and COOH termini.

作者信息

Zeng X H, Ding J P, Xia X M, Lingle C J

机构信息

Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

出版信息

J Gen Physiol. 2001 Jun;117(6):607-28. doi: 10.1085/jgp.117.6.607.


DOI:10.1085/jgp.117.6.607
PMID:11382809
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC2232397/
Abstract

Both beta1 and beta2 auxiliary subunits of the BK-type K(+) channel family profoundly regulate the apparent Ca(2)+ sensitivity of BK-type Ca(2)+-activated K(+) channels. Each produces a pronounced leftward shift in the voltage of half-activation (V(0.5)) at a given Ca(2)+ concentration, particularly at Ca(2)+ above 1 microM. In contrast, the rapidly inactivating beta3b auxiliary produces a leftward shift in activation at Ca(2)+ below 1 microM. In the companion work (Lingle, C.J., X.-H. Zeng, J.-P. Ding, and X.-M. Xia. 2001. J. Gen. Physiol. 117:583-605, this issue), we have shown that some of the apparent beta3b-mediated shift in activation at low Ca(2)+ arises from rapid unblocking of inactivated channels, unlike the actions of the beta1 and beta2 subunits. Here, we compare effects of the beta3b subunit that arise from inactivation, per se, versus those that may arise from other functional effects of the subunit. In particular, we examine gating properties of the beta3b subunit and compare it to beta3b constructs lacking either the NH(2)- or COOH terminus or both. The results demonstrate that, although the NH(2) terminus appears to be the primary determinant of the beta3b-mediated shift in V(0.5) at low Ca(2)+, removal of the NH(2) terminus reveals two other interesting aspects of the action of the beta3b subunit. First, the conductance-voltage curves for activation of channels containing the beta3b subunit are best described by a double Boltzmann shape, which is proposed to arise from two independent voltage-dependent activation steps. Second, the presence of the beta3b subunit results in channels that exhibit an anomalous instantaneous outward current rectification that is correlated with a voltage dependence in the time-averaged single-channel current. The two effects appear to be unrelated, but indicative of the variety of ways that interactions between beta and alpha subunits can affect BK channel function. The COOH terminus of the beta3b subunit produces no discernible functional effects.

摘要

BK 型钾通道家族的β1 和β2 辅助亚基均能深刻调节 BK 型钙激活钾通道的表观钙敏感性。在给定的钙浓度下,尤其是钙浓度高于 1 μM 时,二者都会使半数激活电压(V(0.5))显著左移。相比之下,快速失活的β3b 辅助亚基在钙浓度低于 1 μM 时会使激活曲线左移。在同期发表的论文(Lingle, C.J., X.-H. Zeng, J.-P. Ding, and X.-M. Xia. 2001. J. Gen. Physiol. 117:583 - 605, 本期)中,我们已经表明,与β1 和β2 亚基的作用不同,低钙条件下一些表观上由β3b 介导的激活曲线左移源于失活通道的快速解除阻断。在此,我们比较了β3b 亚基本身因失活产生的效应与可能由该亚基其他功能效应产生的效应。特别地,我们研究了β3b 亚基的门控特性,并将其与缺失 NH(2)-或 COOH 末端或二者皆缺失的β3b 构建体进行比较。结果表明,尽管 NH(2)末端似乎是低钙条件下β3b 介导的 V(0.5)左移的主要决定因素,但去除 NH(2)末端揭示了β3b 亚基作用的另外两个有趣方面。首先,含有β3b 亚基的通道激活的电导 - 电压曲线最好用双玻尔兹曼形状来描述,这被认为源于两个独立的电压依赖性激活步骤。其次,β3b 亚基的存在导致通道表现出异常的瞬时外向电流整流,这与时间平均单通道电流中的电压依赖性相关。这两种效应似乎没有关联,但表明了β亚基和α亚基之间相互作用影响 BK 通道功能的多种方式。β3b 亚基的 COOH 末端未产生可辨别的功能效应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a40e/2232397/1ada5237a66c/JGP8381.f15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a40e/2232397/fdef9fd72db1/JGP8381.fglyph1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a40e/2232397/561d592aed81/JGP8381.fglyph2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a40e/2232397/aec300d44894/JGP8381.fglyph3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a40e/2232397/5af666f39382/JGP8381.s1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a40e/2232397/a4b8f5a62784/JGP8381.f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a40e/2232397/a51a7ebbaaf0/JGP8381.f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a40e/2232397/5c29895fb9af/JGP8381.f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a40e/2232397/03ce2d3c9d41/JGP8381.f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a40e/2232397/bc9789a9aa16/JGP8381.f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a40e/2232397/fd2f62ba89fe/JGP8381.f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a40e/2232397/12c91a743187/JGP8381.f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a40e/2232397/6abc3b6a9a50/JGP8381.f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a40e/2232397/4c1f238324f0/JGP8381.f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a40e/2232397/33beb0efcb29/JGP8381.f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a40e/2232397/1049718509af/JGP8381.f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a40e/2232397/5a2b8f006c5e/JGP8381.f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a40e/2232397/7ef2c67bf5a8/JGP8381.f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a40e/2232397/9b6d96d2da3d/JGP8381.f14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a40e/2232397/1ada5237a66c/JGP8381.f15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a40e/2232397/fdef9fd72db1/JGP8381.fglyph1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a40e/2232397/561d592aed81/JGP8381.fglyph2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a40e/2232397/aec300d44894/JGP8381.fglyph3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a40e/2232397/5af666f39382/JGP8381.s1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a40e/2232397/a4b8f5a62784/JGP8381.f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a40e/2232397/a51a7ebbaaf0/JGP8381.f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a40e/2232397/5c29895fb9af/JGP8381.f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a40e/2232397/03ce2d3c9d41/JGP8381.f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a40e/2232397/bc9789a9aa16/JGP8381.f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a40e/2232397/fd2f62ba89fe/JGP8381.f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a40e/2232397/12c91a743187/JGP8381.f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a40e/2232397/6abc3b6a9a50/JGP8381.f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a40e/2232397/4c1f238324f0/JGP8381.f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a40e/2232397/33beb0efcb29/JGP8381.f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a40e/2232397/1049718509af/JGP8381.f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a40e/2232397/5a2b8f006c5e/JGP8381.f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a40e/2232397/7ef2c67bf5a8/JGP8381.f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a40e/2232397/9b6d96d2da3d/JGP8381.f14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a40e/2232397/1ada5237a66c/JGP8381.f15.jpg

相似文献

[1]
Gating properties conferred on BK channels by the beta3b auxiliary subunit in the absence of its NH(2)- and COOH termini.

J Gen Physiol. 2001-6

[2]
Inactivation of BK channels mediated by the NH(2) terminus of the beta3b auxiliary subunit involves a two-step mechanism: possible separation of binding and blockade.

J Gen Physiol. 2001-6

[3]
Rectification and rapid activation at low Ca2+ of Ca2+-activated, voltage-dependent BK currents: consequences of rapid inactivation by a novel beta subunit.

J Neurosci. 2000-7-1

[4]
Gating and conductance properties of BK channels are modulated by the S9-S10 tail domain of the alpha subunit. A study of mSlo1 and mSlo3 wild-type and chimeric channels.

J Gen Physiol. 2001-12

[5]
Variants of the KCNMB3 regulatory subunit of maxi BK channels affect channel inactivation.

Physiol Genomics. 2003-11-11

[6]
Direct observation of a preinactivated, open state in BK channels with beta2 subunits.

J Gen Physiol. 2006-2

[7]
Modulation of BK channel voltage gating by different auxiliary β subunits.

Proc Natl Acad Sci U S A. 2012-10-29

[8]
Coupling between voltage sensor activation, Ca2+ binding and channel opening in large conductance (BK) potassium channels.

J Gen Physiol. 2002-9

[9]
Functional coupling of the beta(1) subunit to the large conductance Ca(2+)-activated K(+) channel in the absence of Ca(2+). Increased Ca(2+) sensitivity from a Ca(2+)-independent mechanism.

J Gen Physiol. 2000-6

[10]
Functional effects of auxiliary beta4-subunit on rat large-conductance Ca(2+)-activated K(+) channel.

Biophys J. 2004-5

引用本文的文献

[1]
An extracellular scaffolding complex confers unusual rectification upon an ionotropic acetylcholine receptor in .

Proc Natl Acad Sci U S A. 2022-7-19

[2]
Voltage-dependent dynamics of the BK channel cytosolic gating ring are coupled to the membrane-embedded voltage sensor.

Elife. 2018-12-11

[3]
A voltage-dependent K channel in the lysosome is required for refilling lysosomal Ca stores.

J Cell Biol. 2017-6-5

[4]
Cadmium-cysteine coordination in the BK inner pore region and its structural and functional implications.

Proc Natl Acad Sci U S A. 2015-4-21

[5]
Transduction of voltage and Ca2+ signals by Slo1 BK channels.

Physiology (Bethesda). 2013-5

[6]
Inter-α/β subunits coupling mediating pre-inactivation and augmented activation of BKCa(β2).

Sci Rep. 2013

[7]
Modulation of BK channel voltage gating by different auxiliary β subunits.

Proc Natl Acad Sci U S A. 2012-10-29

[8]
The BK channel: a vital link between cellular calcium and electrical signaling.

Protein Cell. 2012-9-21

[9]
Barium ions selectively activate BK channels via the Ca2+-bowl site.

Proc Natl Acad Sci U S A. 2012-6-25

[10]
Contribution of BK channels to action potential repolarisation at minimal cytosolic Ca2+ concentration in chromaffin cells.

Pflugers Arch. 2011-7-14

本文引用的文献

[1]
Inactivation of BK channels mediated by the NH(2) terminus of the beta3b auxiliary subunit involves a two-step mechanism: possible separation of binding and blockade.

J Gen Physiol. 2001-6

[2]
Alternative splicing switches potassium channel sensitivity to protein phosphorylation.

J Biol Chem. 2001-3-16

[3]
Oxidative regulation of large conductance calcium-activated potassium channels.

J Gen Physiol. 2001-3

[4]
Role of the beta1 subunit in large-conductance Ca(2+)-activated K(+) channel gating energetics. Mechanisms of enhanced Ca(2+) sensitivity.

J Gen Physiol. 2000-9

[5]
Voltage and Ca2+ activation of single large-conductance Ca2+-activated K+ channels described by a two-tiered allosteric gating mechanism.

J Gen Physiol. 2000-7-1

[6]
Rectification and rapid activation at low Ca2+ of Ca2+-activated, voltage-dependent BK currents: consequences of rapid inactivation by a novel beta subunit.

J Neurosci. 2000-7-1

[7]
Functional coupling of the beta(1) subunit to the large conductance Ca(2+)-activated K(+) channel in the absence of Ca(2+). Increased Ca(2+) sensitivity from a Ca(2+)-independent mechanism.

J Gen Physiol. 2000-6

[8]
A novel nervous system beta subunit that downregulates human large conductance calcium-dependent potassium channels.

J Neurosci. 2000-5-15

[9]
A neuronal beta subunit (KCNMB4) makes the large conductance, voltage- and Ca2+-activated K+ channel resistant to charybdotoxin and iberiotoxin.

Proc Natl Acad Sci U S A. 2000-5-9

[10]
Cloning and functional characterization of novel large conductance calcium-activated potassium channel beta subunits, hKCNMB3 and hKCNMB4.

J Biol Chem. 2000-3-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索