Krifi M N, Miled K, Abderrazek M, El Ayeb M
Laboratoire de Purification des Immunsérums Thérapeutiques pour usage Humain, Institut Pasteur deTunis, 1002, Tunis-Belvedere, Tunisie.
Toxicon. 2001 Sep;39(9):1317-26. doi: 10.1016/s0041-0101(01)00083-6.
The pharmacokinetic parameters of Bot venom were determined in a rabbit model using a specific sandwich type ELISA. After intravenous injection, Bot venom seems to follow a three-compartment pharmacokinetic open model. However, after subcutaneous injection, the distribution and elimination kinetics of Bot venom are best characterized by a bi-compartment pharmacokinetic open model. Bot venom is completely absorbed from its SC injection site, since the absolute bioavailability is higher than 95%; the maximum plasma venom concentration is reached between 30 and 60 min after venom injection. Bot venom diffuses rapidly to tissues and is distributed in a high body volume. The total body clearance of Bot venom is relatively high in agreement with a low mean residence time. Antivenom immunotherapy experiments were carried out in the rabbit model, in order to select the most appropriate strategy for the adequate use of this treatment. The effects of the route, the dose and the delay of antivenom injection on Bot venom pharmacokinetic parameters and on the antivenom immunotherapy efficacy were then studied. These studies indicated in particular that: (1) the injection of a minimal neutralizing antivenom dose is required for a complete and permanent neutralization of circulating venom antigens; this dose is named minimal (threshold) efficacious antivenom dose; (2) the intramuscular route is not the most appropriate way for antivenom injection; and (3) a delayed antivenom immunotherapy remains efficacious especially on the neutralization of the remaining circulating venom. In short, these experimental studies show that early intravenous injection of an appropriate antivenom dose (at least the threshold efficacious dose) is the indicated way for a rapid and permanent neutralization of circulating scorpion venom toxins.
使用特定的夹心型酶联免疫吸附测定法(ELISA)在兔模型中测定了Bot毒液的药代动力学参数。静脉注射后,Bot毒液似乎遵循三室药代动力学开放模型。然而,皮下注射后,Bot毒液的分布和消除动力学最好用二室药代动力学开放模型来描述。Bot毒液从其皮下注射部位完全吸收,因为绝对生物利用度高于95%;毒液注射后30至60分钟达到最大血浆毒液浓度。Bot毒液迅速扩散到组织中,并分布在较大的身体容积中。Bot毒液的总体清除率相对较高,这与较低的平均驻留时间一致。在兔模型中进行了抗蛇毒血清免疫治疗实验,以选择充分使用这种治疗的最合适策略。然后研究了抗蛇毒血清注射途径、剂量和延迟对抗蛇毒血清药代动力学参数和抗蛇毒血清免疫治疗效果的影响。这些研究特别表明:(1)需要注射最小中和剂量的抗蛇毒血清才能完全永久中和循环毒液抗原;该剂量被称为最小(阈值)有效抗蛇毒血清剂量;(2)肌肉注射途径不是抗蛇毒血清注射的最合适方式;(3)延迟的抗蛇毒血清免疫治疗仍然有效,尤其是对剩余循环毒液的中和。简而言之,这些实验研究表明,早期静脉注射适当剂量的抗蛇毒血清(至少阈值有效剂量)是快速永久中和循环蝎毒毒素的指定方法。