Chou P Y, Fasman G D
Biochemistry. 1975 Jun 3;14(11):2536-41. doi: 10.1021/bi00682a037.
It is proposed that glucagon, a polypeptide hormone, is delicately balanced between two major conformational states. Utilizing a new predictive model [Chou, P.Y., and Fasman, G.D. (1974), Biochemistry 13, 222] which considers all the conformational states in proteins (helix, beta sheet, random coil, and beta turns), the secondary structural regions of glucagon are computed herein. The conformational sensitivity of glucagon may be due to residues 19-27 which have both alpha-helical potential (mean value of Palpha = 1.19) as well as beta-sheet potential (mean value of Pbeta = 1.25). Two conformational states are predicted for glucagon. In predicted form (a), residues 5-10 form a beta-sheet region while residues 19-27 form an alpha-helical region (31% alpha, 21% beta) agreeing well with the circular dichroism (CD) spectra of glucagon. The similarity in the CD spectra of glucagon and insulin further suggests the presence of beta structure in glucagon, since X-ray analysis of insulin showed 24% beta sheet. In predicted form (b), both regions, residues 5-10 and residues 19-27, are beta sheets sheets (0% alpha, 52% beta) in agreement with the infrared spectral evidence that glucagon gels and fibrils have a predominant beta-sheet conformation. Since three reverse beta turns are predicted at residues 2-5, 10-13, and 15-18, glucagon may possess tertiary structure in agreement with viscosity and tritium-hydrogen exchange experiments. A proposal is offered concerning an induced alpha yields beta transition at residues 22-27 in glucagon during receptor site binding. Amino acid substitutions are proposed which should disrupt the beta sheets of glucagon with concomitant loss of biological activity. The experimental findings that glucagon aggregates to form dimers, trimers, and hexamers can be explained in terms of beta-sheet interactions as outlined in the present predictive model. Thus the conflicting conclusions of previous workers, concerning the conformation of glucagon in different environments, can be rationalized by the suggested conformational transition occurring within the molecule.
有人提出,多肽激素胰高血糖素在两种主要构象状态之间保持着微妙的平衡。利用一种新的预测模型[周培源、法斯曼(1974年),《生物化学》13卷,222页],该模型考虑了蛋白质中的所有构象状态(螺旋、β折叠、无规卷曲和β转角),本文计算了胰高血糖素的二级结构区域。胰高血糖素的构象敏感性可能归因于19 - 27位残基,它们既具有α螺旋潜力(Pα平均值 = 1.19),也具有β折叠潜力(Pβ平均值 = 1.25)。预测胰高血糖素有两种构象状态。在预测形式(a)中,5 - 10位残基形成一个β折叠区域,而19 - 27位残基形成一个α螺旋区域(31%α,21%β),这与胰高血糖素的圆二色光谱(CD)非常吻合。胰高血糖素和胰岛素的CD光谱相似性进一步表明胰高血糖素中存在β结构,因为胰岛素的X射线分析显示有24%的β折叠。在预测形式(b)中,5 - 10位残基区域和19 - 27位残基区域都是β折叠(0%α,52%β),这与红外光谱证据一致,即胰高血糖素凝胶和纤维具有主要的β折叠构象。由于预测在2 - 5位、10 - 13位和15 - 18位残基处有三个反向β转角,胰高血糖素可能具有与粘度和氚 - 氢交换实验相符的三级结构。有人提出了一个关于胰高血糖素在受体位点结合期间22 - 27位残基处诱导α向β转变的提议。提出了氨基酸取代方案,这应该会破坏胰高血糖素的β折叠并伴随生物活性丧失。胰高血糖素聚集形成二聚体、三聚体和六聚体的实验结果可以根据本预测模型中概述的β折叠相互作用来解释。因此,先前研究人员关于胰高血糖素在不同环境中构象的相互矛盾的结论,可以通过分子内发生的建议构象转变来合理化。