Muñoz P A, Warren J R, Noelken M E
Biochemistry. 1976 Oct 19;15(21):4666-71. doi: 10.1021/bi00666a019.
Conformations of the globular protein staphylococcal enterotoxin B have been examined experimentally by ultraviolet circular dichroism (CD) and visible optical rotatory dispersion (ORD). Chen-Yang-Chau analysis (Chen, Y.-H., Yang, J.T., and Chau, K. H. (1974), Biochemistry 13, 3350) of the far-ultraviolet CD spectrum of native enterotoxin B revealed (assuming an average helix length of 11 residues) 9% alpha helix, 38% beta structure, and 53% random coil. A fourfold increase in alpha-helix was observed for enterotoxin exposed to 0.2% sodium dodecyl sulfate, behavior typical for globular proteins of low helical content. Values of -40 to -50 for the Moffitt-Yang parameter b0 calculated from visible ORD suggested 6-13% alpha helix in native enterotoxin. Application of a new predictive model (Chou, P. Y., and Fasman, G. D. (1974), Biochemistry 13,222) to the amino acid sequence of enterotoxin B indicated 11% alpha helix, 34% beta structure, and 55% coil in native enterotoxin. The excellent agreement for the amount of alpha and beta conformation utilizing different optical and predictive methods indicates beta structure as the dominant secondary structure in native enterotoxin B. Most of the beta structure is predicted by Chou-Fasman analysis to reside in two large regions of antiparallel beta sheet involving residues 81-148 and residues 184-217. Such highly cooperative regions of anti-parallel beta sheet account for the slow unfolding of enterotoxin B in concentrated guanidine hydrochloride and rapid folding of guanidine hydrochloride denatured enterotoxin B to native conformation(s) (Warren, J.R., Spero, L., and Metzger, J. F. (1974), Biochemistry 13, 1678). A more than twofold increase in alpha-helix content with a small diminution in beta structure was detected by CD and ORD upon acidification of aqueous enterotoxin to pH 2.5. Thus, the beta structure of enterotoxin B appears to resist isothermal denaturation and constitutes a stable interior core of structure in the enterotoxin molecule.
已通过紫外圆二色性(CD)和可见旋光色散(ORD)实验研究了球状蛋白葡萄球菌肠毒素B的构象。对天然肠毒素B的远紫外CD光谱进行的陈-杨-周分析(Chen, Y.-H., Yang, J.T., and Chau, K. H. (1974), Biochemistry 13, 3350)表明(假设平均螺旋长度为11个残基)9%的α螺旋、38%的β结构和53%的无规卷曲。观察到暴露于0.2%十二烷基硫酸钠的肠毒素α螺旋增加了四倍,这是低螺旋含量球状蛋白的典型行为。根据可见ORD计算的莫菲特-杨参数b0值为-40至-50,表明天然肠毒素中α螺旋含量为6 - 13%。将一种新的预测模型(Chou, P. Y., and Fasman, G. D. (1974), Biochemistry 13,222)应用于肠毒素B的氨基酸序列,表明天然肠毒素中α螺旋含量为11%,β结构含量为34%,卷曲含量为55%。利用不同光学和预测方法得到的α和β构象数量的极佳一致性表明β结构是天然肠毒素B中的主要二级结构。通过周-法斯曼分析预测,大部分β结构位于反平行β折叠的两个大区域,涉及残基81 - 148和残基184 - 217。这种反平行β折叠的高度协同区域解释了肠毒素B在浓盐酸胍中缓慢展开以及盐酸胍变性的肠毒素B快速折叠回天然构象的现象(Warren, J.R., Spero, L., and Metzger, J. F. (1974), Biochemistry 13, 1678)。当将水性肠毒素酸化至pH 2.5时,通过CD和ORD检测到α螺旋含量增加了两倍多,β结构略有减少。因此,肠毒素B的β结构似乎能抵抗等温变性,并构成肠毒素分子中稳定的内部结构核心。