Zisch A H, Schenk U, Schense J C, Sakiyama-Elbert S E, Hubbell J A
Department of Materials and Institute for Biomedical Engineering, ETH and University of Zurich, Moussonstrasse 18, 8044 Zurich, Switzerland.
J Control Release. 2001 May 14;72(1-3):101-13. doi: 10.1016/s0168-3659(01)00266-8.
Vascular endothelial growth factor (VEGF) is a key factor in endothelial cell biology and blood vessel formation and a candidate therapeutic for the stimulation of angiogenesis-dependent tissue regeneration. The objective of this study was to confer the angiogenic activity of VEGF(121) upon the biomaterial fibrin, a natural substrate for endothelial cell growth and clinically accepted as 'fibrin glue'. To achieve this, we engineered fibrin-based hydrogels that were covalently modified with VEGF(121). Our laboratory has recently developed novel methodology that allows the covalent incorporation of exogenous bioactive peptides by the transglutaminase activity of factor XIIIa into fibrin during coagulation. Here, this ability of factor XIIIa to crosslink additional proteins within fibrin was employed to covalently incorporate VEGF(121). By recombinant DNA methodology, a mutant VEGF(121) variant, alpha(2)-PI(1--8)-VEGF(121), which contains an additional factor XIIIa substrate sequence NQEQVSPL at the aminoterminus, was expressed in E. coli. In soluble form, the mutant protein fully retained its mitogenic activity for endothelial cells. Using (125)I-labeled alpha(2)-PI(1--8)-VEGF(121), its covalent incorporation and the efficiency of incorporation into fibrin was demonstrated and characterized. The immobilized, fibrin-conjugated VEGF(121) protein remained an active and very efficient mitogen for human endothelial cells grown on two-dimensional VEGF(121)-modified fibrin surfaces, and the incorporation of increasing amounts of alpha(2)-PI(1--8)-VEGF(121) resulted in dose-dependent enhancement of endothelial cell growth. The VEGF-modified fibrin matrices can be formed as injectable gels in a single-step reaction under physiological conditions in vivo. When used as a ingrowth matrix, such VEGF incorporating materials could be useful in a variety of clinical situations that require an angiogenic response into an ischemic region or inplant.
血管内皮生长因子(VEGF)是内皮细胞生物学和血管形成中的关键因子,也是刺激血管生成依赖性组织再生的候选治疗药物。本研究的目的是赋予生物材料纤维蛋白VEGF(121)的血管生成活性,纤维蛋白是内皮细胞生长的天然底物,临床上被用作“纤维蛋白胶”。为实现这一目标,我们设计了用VEGF(121)进行共价修饰的基于纤维蛋白的水凝胶。我们实验室最近开发了一种新方法,该方法可通过凝血过程中因子XIIIa的转谷氨酰胺酶活性将外源性生物活性肽共价掺入纤维蛋白中。在此,利用因子XIIIa在纤维蛋白内交联其他蛋白质的这种能力来共价掺入VEGF(121)。通过重组DNA方法,在大肠杆菌中表达了一种突变型VEGF(121)变体,即α(2)-PI(1--8)-VEGF(121),其在氨基末端含有额外的因子XIIIa底物序列NQEQVSPL。以可溶性形式存在时,该突变蛋白完全保留了其对内皮细胞的促有丝分裂活性。使用(125)I标记的α(2)-PI(1--8)-VEGF(121),证明并表征了其共价掺入以及掺入纤维蛋白的效率。固定化的、与纤维蛋白结合的VEGF(121)蛋白对于在二维VEGF(121)修饰的纤维蛋白表面生长的人内皮细胞仍然是一种活性且非常有效的促有丝分裂原,并且增加α(2)-PI(1--8)-VEGF(121)的掺入量会导致内皮细胞生长呈剂量依赖性增强。VEGF修饰的纤维蛋白基质可在体内生理条件下通过一步反应形成可注射凝胶。当用作向内生长基质时,这种掺入VEGF的材料可用于多种临床情况,这些情况需要在缺血区域或植入物中产生血管生成反应。