文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

重组蛋白水凝胶的分子工程:可编程设计与生物医学应用

Molecular Engineering of Recombinant Protein Hydrogels: Programmable Design and Biomedical Applications.

作者信息

Zhang He, Wang Jiangning, Wei Jiaona, Fu Xueqi, Ma Junfeng, Chen Jing

机构信息

National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China.

College of Plant Science, Jilin University, Changchun 130062, China.

出版信息

Gels. 2025 Jul 26;11(8):579. doi: 10.3390/gels11080579.


DOI:10.3390/gels11080579
PMID:40868710
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12385739/
Abstract

Recombinant protein hydrogels have emerged as transformative biomaterials that overcome the bioinertness and unpredictable degradation of traditional synthetic systems by leveraging genetically engineered backbones, such as elastin-like polypeptides, SF, and resilin-like polypeptides, to replicate extracellular matrix (ECM) dynamics and enable programmable functionality. Constructed through a hierarchical crosslinking strategy, these hydrogels integrate reversible physical interactions with covalent crosslinking approaches, collectively endowing the system with mechanical strength, environmental responsiveness, and controlled degradation behavior. Critically, molecular engineering strategies serve as the cornerstone for functional precision: domain-directed self-assembly exploits coiled-coil or β-sheet motifs to orchestrate hierarchical organization, while modular fusion of bioactive motifs through genetic encoding or site-specific conjugation enables dynamic control over cellular interactions and therapeutic release. Such engineered designs underpin advanced applications, including immunomodulatory scaffolds for diabetic wound regeneration, tumor-microenvironment-responsive drug depots, and shear-thinning bioinks for vascularized bioprinting, by synergizing material properties with biological cues. By uniting synthetic biology with materials science, recombinant hydrogels deliver unprecedented flexibility in tuning physical and biological properties. This review synthesizes emerging crosslinking paradigms and molecular strategies, offering a framework for engineering next-generation, adaptive biomaterials poised to address complex challenges in regenerative medicine and beyond.

摘要

重组蛋白水凝胶已成为具有变革性的生物材料,通过利用基因工程骨架,如弹性蛋白样多肽、丝素蛋白(SF)和类 resilin 多肽,克服了传统合成系统的生物惰性和不可预测的降解,以复制细胞外基质(ECM)动态并实现可编程功能。这些水凝胶通过分层交联策略构建,将可逆的物理相互作用与共价交联方法相结合,共同赋予系统机械强度、环境响应性和可控的降解行为。至关重要的是,分子工程策略是功能精确性的基石:结构域定向自组装利用卷曲螺旋或β折叠基序来编排分层组织,而通过基因编码或位点特异性共轭对生物活性基序进行模块化融合能够动态控制细胞相互作用和治疗性释放。通过将材料特性与生物学线索协同作用,这种工程设计支撑了先进的应用,包括用于糖尿病伤口再生的免疫调节支架、肿瘤微环境响应性药物库以及用于血管化生物打印的剪切变稀生物墨水。通过将合成生物学与材料科学相结合,重组水凝胶在调节物理和生物学特性方面提供了前所未有的灵活性。本综述综合了新兴的交联模式和分子策略,为设计下一代适应性生物材料提供了一个框架,有望应对再生医学及其他领域的复杂挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed24/12385739/bac7ebb89dd6/gels-11-00579-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed24/12385739/f7233db185ae/gels-11-00579-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed24/12385739/a7b7e4039aed/gels-11-00579-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed24/12385739/becd7ff9cb98/gels-11-00579-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed24/12385739/b7d07f4844b7/gels-11-00579-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed24/12385739/4b376df5edb5/gels-11-00579-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed24/12385739/daf90b97eaf8/gels-11-00579-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed24/12385739/9da054940073/gels-11-00579-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed24/12385739/180350b683e8/gels-11-00579-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed24/12385739/bac7ebb89dd6/gels-11-00579-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed24/12385739/f7233db185ae/gels-11-00579-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed24/12385739/a7b7e4039aed/gels-11-00579-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed24/12385739/becd7ff9cb98/gels-11-00579-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed24/12385739/b7d07f4844b7/gels-11-00579-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed24/12385739/4b376df5edb5/gels-11-00579-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed24/12385739/daf90b97eaf8/gels-11-00579-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed24/12385739/9da054940073/gels-11-00579-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed24/12385739/180350b683e8/gels-11-00579-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed24/12385739/bac7ebb89dd6/gels-11-00579-g009.jpg

相似文献

[1]
Molecular Engineering of Recombinant Protein Hydrogels: Programmable Design and Biomedical Applications.

Gels. 2025-7-26

[2]
Gene hydrogel platforms for targeted skin therapy: bridging hereditary disorders, chronic wounds, and immune related skin diseases.

Front Drug Deliv. 2025-7-1

[3]
Unlocking the regenerative properties of extraembryonic membrane-derived biomaterials in tissue engineering.

Acta Biomater. 2025-7-16

[4]
Advancements in Hydrogels: A Comprehensive Review of Natural and Synthetic Innovations for Biomedical Applications.

Polymers (Basel). 2025-7-24

[5]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[6]
Genetic and bioactive functionalization of bioinks for 3D bioprinting.

Bioprocess Biosyst Eng. 2025-5-20

[7]
Microswimmers That Flex: Advancing Microswimmers with Templated Assembly and Responsive DNA Nanostructures.

Acc Mater Res. 2025-7-14

[8]
Hydrogel-driven innovations for targeted delivery, immune modulation, and tissue repair in thyroid cancer therapy.

Front Cell Dev Biol. 2025-7-25

[9]
Photoacoustic processing of decellularized extracellular matrix for biofabricating living constructs.

Acta Biomater. 2024-7-15

[10]
Engineering therapeutic scaffolds: integrating drug delivery with tissue regeneration.

J Mater Chem B. 2025-8-21

本文引用的文献

[1]
Silk fibroin hydrogel with recombinant silk fibroin/NT3 protein enhances wound healing by promoting type III collagen synthesis and hair follicle regeneration in skin injury.

Mater Today Bio. 2025-6-9

[2]
Vascular Endothelial Growth Factor-Mimetic Peptide and Mitochondria-Targeted Antioxidant-Loaded Hydrogel System Improves Repair of Myocardial Infarction in Mice.

J Biomed Mater Res A. 2025-5

[3]
Hyaluronic Acid and Skin: Its Role in Aging and Wound-Healing Processes.

Gels. 2025-4-9

[4]
Collagen-Based Wound Dressings: Innovations, Mechanisms, and Clinical Applications.

Gels. 2025-4-5

[5]
Silk fibroin: An innovative protein macromolecule-based hydrogel/ scaffold revolutionizing breast cancer treatment and diagnosis - Mechanisms, advancements, and targeting capabilities.

Int J Biol Macromol. 2025-5

[6]
Recombinant keratin: Comprehensive review of synthesis, hierarchical assembly, properties, and applications.

Acta Biomater. 2025-5-15

[7]
Polymer Applied in Hydrogel Wound Dressing for Wound Healing: Modification/Functionalization Method and Design Strategies.

ACS Biomater Sci Eng. 2025-4-14

[8]
Enhancing Form Stability: Shrink-Resistant Hydrogels Made of Interpenetrating Networks of Recombinant Spider Silk and Collagen-I.

Adv Healthc Mater. 2025-5

[9]
Poly-lysine-modified recombinant protein nanocages for effective delivery of small activating RNA.

J Control Release. 2025-6-10

[10]
Protein-polysaccharide based nanogel/hydrogel composite with controlled continuous delivery of drug for enhanced wound healing.

Carbohydr Polym. 2025-5-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索